31 resultados para Heart Butte Dam.
em Aquatic Commons
Resumo:
The contents of the heavy metals Fe, Zn, Cu, Mn, Pb, Cd and As were examined in the liver, heart, gills, kidney and muscles of the fish Clarias gariepinus from Eko-Ende dam in Ikirun, the capital of Ifelodun Local Government of Osun State, Nigeria. C. gariepinus is the fish of choice and the most demanded in the southwest of Nigeria. The highest metal concentrations were in the liver and the gills while the lowest was in the muscles. The general deceasing order of metal accumulation in the organs was Fe > Zn > Cu > Mn > Cd. Lead and arsenic were not detected in any organ. The values were of lower concentrations than found in many other dams and rivers in Nigeria and some other countries. The values were also lower than the FAO/WHO recommended maximum limits in fish samples, making the fish to be safe and not of any hazards for the consumers.
Resumo:
Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.
Resumo:
Survey of Fungal infestation of some species of fish in Tagwai Dam Minna was carried out from March to June 2002. Fungi were isolated from the scale/skin, gills and fins. Twenty-one fungi species were identified from 18 species of fish microbial growth was measured by direct cell count using Stuart colony counter. Most of the fungi encountered were of the mould group and infestation occurred among all the species sampled. The infestation was predominantly by Aspergillus species and the scale/skin was most widely affected. The study showed the identified fungi in order of frequency to be as follows. Aspergillius niger. Rrhizopus spp. Mmucor spp Aspergilus flavum. Aspergillus parasitous. Aspergillus fumigatus, Microsporum canis. Penicillum virridicalumand Fusarium spp respectively. Aspergillus niger occurred on all the species of fish sampled. Barrilius spa and Chrysichrhy auratus longifilis had significantly higher (P<0.05) mean fungal load on their fins and gills. There was no significant difference (P>0.05) in the mean fungal load in different parts of the body of other fish species sampled
Resumo:
Artisanal Fish Societies constitutes one of the poorest societies in the developing world. Attempts to harness the potentials of the societies have often failed due to the enormity of the problem of poverty. This study was conducted in four major fishing villages namely; Abule titun, Apojola, Imama Odo and Ibaro in order to investigate the occupational practices and the problems of rural artisanal fisherfolks in Oyam's Dam, area of Ogun State. Eighty respondents were randomly selected among the artisanal fisher folks for interview using interview guide. The findings revealed that 43.8% of the fisherfolks are within active range of 31-40 years while 30% are within 21-30 years range. Also 31% had no formal education indicating a relatively high level of illiteracy among the fisherfolks while majority of the respondents practice fishing activities using paddle and canoe. It was similarly discovered from the study that the most pressing problems of the fisherfolks is the lack of basic social amenities like electricity, potable water, access roads, hospitals and markets. It is therefore recommended that basic social infrastructures be provided for the artisanal fishing communities in order to improve their social welfare, standard of living and the capacity to have a sustainable fishing occupation in the interest of food security and poverty alleviation
Resumo:
Artisanal Fish Societies constitutes one of the poorest societies in the developing world. Attempts to harness the potentials of such societies have often failed due to the enormity of the problem of poverty. This study was conducted in four major fishing villages namely: Abule Titun, Apojola, Imala Odo and Ibaro in order to investigate the occupational practices and the problems of rural artisanal fisherfolks in Oyam's Dam, area of Ogun State. Eighty respondents were randomly selected among the artisanal fisher folks for interview using interview guide. The findings revealed that 43.8% of the fisherfolks are within active age range of 31-40 years while 30% are within 21-30 years range. Also 31% had no formal education indicating a relatively high level of illiteracy among the fisherfolks while majority of the respondents practice fishing activities using paddle and canoe. It was similarly discovered from the study that the most pressing problems of the fishfolks is the lack of basic social amenities like electricity, potable water, access roads, hospital and markets. It is therefore recommended that basic social infrastructures be provided for the artisanal fishing communities in order to improve their social welfare, standard of living and the capacity to have a sustainable fishing occupation in the interest of food security and poverty alleviation
Resumo:
The report describes the results of preliminary analyses of data obtained from a series of water temperature loggers sited at various distances (0.8 to 21.8 km) downstream of Kielder dam on the River North Tyne and in two natural tributaries. The report deals with three aspects of the water temperature records: An analysis of an operational aspect of the data sets for selected stations, a simple examination of the effects of impoundment upon water temperature at or close to the point of release, relative to natural river temperatures, and an examination of rate of change of monthly means of daily mean, maximum, minimum and range (maximum - minimum) with distance downstream of the point of release during 1983.
Resumo:
This report describes the general background to the project, defines the stations from which data sets have been obtained and lists the available data. The project had the following aims: To develop a more accurate and less labour-intensive system for the collection and processing of water temperature data from a number of stations within a stream/river system, and to use the River North Tyne downstream of the Kielder impoundment as a test bed for the system. This should yield useful information on the effects of impoundment upon downstream water temperatures.
Resumo:
The paper outlines briefly the history of the fishery in a dam reservoir in India. The reservoir was very productive in its early years, with support from a seed farm, ice plant, cold storage and regulated entry of fishery. However, once entry restrictions were relaxed and closed fishing seasons no longer enforced, the yield of fish from the reservoir declined.
Resumo:
In 2001, representative samples of adult Columbia Basin chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho salmon (O. kisutch) populations at Bonneville Dam were collected. Fish were trapped, anesthetized, sampled for scales and biological data, revived, and then released adult migrating salmonids. Scales were examined to estimate age composition; the results contributed to an ongoing database for age class structure of Columbia Basin salmon populations. Based on scale analysis of chinook salmon, four-year-old fish (from brood year [BY] 1997) comprised 88% of the spring chinook, 67% of the summer chinook, and 42% of the Bright fall chinook salmon population. Five-year-old fish (BY 1996) comprised 9% of the spring chinook, 14% of the summer chinook, and 9% of the fall chinook salmon population. The sockeye salmon population at Bonneville was predominantly four-year-old fish (81%), with 18% returning as five-year-olds in 2001. The coho salmon population was 96% three-year-old fish (Age 1.1). Length analysis of the 2001 returns indicated that chinook salmon with a stream-type life history are larger (mean length) than the chinook salmon with an ocean-type life history. Trends in mean length over the sampling period for returning 2001 chinook salmon were analyzed. Chinook salmon of age classes 0.2 and 1.3 show a significant increase in mean length over time. Age classes 0.1, 0.3, 0.4, 1.1, 1.2, and 1.4 show no significant change over time. A year class regression over the past 12 years of data was used to predict spring, summer, and Bright fall chinook salmon population sizes for 2002. Based on three-year-old returns, the relationship predicts four-year-old returns of 132,600 (± 46,300, 90% predictive interval [PI]) spring chinook and 44,200 (± 11,700, 90% PI) summer chinook salmon for the 2002 runs. Based on four-year-old returns, the relationship predicts five-year-old returns of 87,800 (± 54,500, 90% PI) spring, 33,500 (± 11,500, 90% PI) summer, and 77,100 (± 25,800, 90% PI) Bright fall chinook salmon for the 2002 runs. The 2002 run size predictions should be used with caution; some of these predictions are well beyond the range of previously observed data.
Resumo:
In 2000, representative samples of adult Columbia Basin chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho salmon (O. kisutch), populations were collected at Bonneville Dam. Fish were trapped, anesthetized, sampled for scales and biological data, allowed to revive, and then released. Scales were examined to estimate age composition and the results contribute to an ongoing database for age class structure of Columbia Basin salmon populations. Based on scale analysis, four-year-old fish (from brood year (BY) 1996) were estimated to comprise 83% of the spring chinook, 31% of the summer chinook, and 32% of the upriver bright fall chinook salmon population. Five-year-old fish (BY 1995) were estimated to comprise 2% of the spring chinook, 26% of the summer chinook, and 40% of the fall chinook salmon population. Three-year-old fish (BY 1997) were estimated to comprise 14% of the spring chinook, 42% of the summer chinook, and 17% of the fall chinook salmon population. Two-year-olds accounted for approximately 11% of the fall chinook population. The sockeye salmon population sampled at Bonneville was predominantly four-year-old fish (95%), and the coho salmon population was 99.9% three-year-old fish (Age 1.1). Length analysis of the 2000 returns indicated that chinook salmon with a stream-type life history are larger (mean length) than the chinook salmon with an ocean-type life history. Trends in mean length over the sampling period were also analysis for returning 2000 chinook salmon. Fish of age classes 0.2, 1.1, 1.2, and 1.3 have a significant increase in mean length over time. Age classes 0.3 and 0.4 have no significant change over time and age 0.1 chinook salmon had a significant decrease in mean length over time. A year class regression over the past 11 years of data was used to predict spring and summer chinook salmon population sizes for 2001. Based on three-year-old returns, the relationship predicts four-year-old returns of 325,000 (± 111,600, 90% Predictive Interval [PI]) spring chinook and 27,800 (± 29,750, 90% PI) summer chinook salmon. Based on four-year-old returns, the relationship predicts five-year-old returns of 54,300 (± 40,600, 90% PI) spring chinook and 11,000 (± 3,250, 90% PI) summer chinook salmon. The 2001 run size predictions used in this report should be used with caution, these predictions are well beyond the range of previously observed data.
Resumo:
In 2002, representative samples of migrating Columbia Basin chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho salmon (O. kisutch) adult populations were collected at Bonneville Dam. Fish were trapped, anesthetized, sampled for scales and biological data, revived, and then released. Scales were examined to estimate age composition; the results contributed to an ongoing database for age class structure of Columbia Basin salmon populations. Based on scale analysis of chinook salmon, four-year-old fish (from brood year [BY] 1998) comprised 86% of the spring chinook, 51% of the summer chinook, and 51% of the bright fall chinook salmon population. Five-year-old fish (BY 1997) comprised 13% of the spring chinook, 43% of the summer chinook, and 11% of the bright fall chinook salmon population. The sockeye salmon population at Bonneville was predominantly five-year-old fish (55%), with 40% returning as four-year-olds in 2002. For the coho salmon population, 88% of the population was three-year-old fish of age class 1.1, while 12% were age class 1.0. Length analysis of the 2002 returns indicated that chinook salmon with a stream-type life history are larger (mean length) at age than the chinook salmon with an ocean-type life history. Trends in mean length over the sampling period for returning 2002 chinook salmon were analyzed. Chinook salmon of age classes 1.2 and 1.3 show a significant increase in mean length over the duration of the migration. A year class regression over the past 14 years of data was used to predict spring, summer, and bright fall chinook salmon population sizes for 2003. Based on three-year-old returns, the relationship predicts four-year-old returns of 54,200 (± 66,600, 90% predictive interval [PI]) spring chinook, 23,800 (± 19,100, 90% PI) summer, and 169,100 (± 139,500, 90% PI) bright fall chinook salmon for the 2003 runs. Based on four-year-old returns, the relationship predicts five-year-old returns of 36,300 (± 35,400, 90% PI) spring, 63,800 (± 10,300, 90% PI) summer, and 91,100 (± 69,400, 90% PI) bright fall chinook salmon for the 2003 runs. The 2003 run size predictions should be used with caution; some of these predictions are well beyond the range of previously observed data.