4 resultados para Healthy lifestyle behaviors

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dosidicus gigas is a large pelagic cephalopod of the eastern Pacific that has recently undergone an unexpected, significant range expansion up the coast of North America. The impact that such a range expansion is expected to have on local fisheries and marine ecosystems has motivated a thorough study of this top predator, a squid whose lifestyle has been quite mysterious until recently. Unfortunately, Dosidicus spends daylight hours at depths prohibitive to making observations without significant artificial interference. Observations of this squid‟s natural behaviors have thus far been considerably limited by the bright illumination and loud noises of remotely-operated-vehicles, or else the presence of humans from boats or with SCUBA. However, recent technological innovations have allowed for observations to take place in the absence of humans, or significant human intrusion, through the use of animal-borne devices such as National Geographic‟s CRITTERCAM. Utilizing the advanced video recording and data logging technology of this device, this study seeks to characterize unknown components of Dosidicus gigas behavior at depth. Data from two successful CRITTERCAM deployments reveal an assortment of new observations concerning Dosidicus lifestyle. Tri-axial accelerometers enable a confident description of Dosidicus orientation during ascents, descents, and depth maintenance behavior - previously not possible with simple depth tags. Video documentation of intraspecific interactions between Dosidicus permits the identification of ten chromatic components, a previously undescribed basal chromatic behavior, and multiple distinct body postures. And finally, based on visualizations of spermatophore release by D. gigas and repetitive behavior patterns between squid pairs, this thesis proposes the existence of a new mating behavior in Dosidicus. This study intends to provide the first glimpse into the natural behavior of Dosidicus, establishing the groundwork for a comprehensive ethogram to be supported with data from future CRITTERCAM deployments. Cataloguing these behaviors will be useful in accounting for Dosidicus‟ current range expansion in the northeast Pacific, as well as to inform public interest in the impacts this expansion will have on local fisheries and marine ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many species of reef f ish agg regate seasonally in large numbers to spawn at predictable times and sites (Johannes, 1978; Sadovy, 1996; Domeier and Colin, 1997). Although spawning behavior has been observed for many reef fish in the wild (Wicklund, 1969; Smith, 1972; Johannes, 1978; Sadovy et al., 1994; Aguilar Perera and Aguilar Davila, 1996), few records exist of observations on the courtship or natural spawning for the commercially important family Carangidae (jacks) (von Westernhagen, 1974; Johannes, 1981; Sala et al., 2003). In this study, we present the first observations on the natural spawning behavior of the economically-valuable permit (Trachinotus falcatus)(Linnaeus, 1758) from the full to new moon period at reef promontories in Belize, with notes on the spawning of the yellow jack (Carangoides bartholomaei) (Cuvier, 1833), and the courtship of five other carangid species.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We monitored the movements of 45 adult Summer Flounder (Paralichthys dentatus) between June 2007 and July 2008 through the use of passive acoustic telemetry to elucidate migratory and within-estuary behaviors in a lagoon system of the southern mid-Atlantic Bight. Between 8 June and 10 October 2007, fish resided primarily in the deeper (>3 m) regions of the system and exhibited low levels of large-scale (100s of meters) activity. Mean residence time within this estuarine lagoon system was conservatively estimated to be 130 days (range: 18–223 days), which is 1.5 times longer than the residence time previously reported for Summer Flounder in a similar estuarine habitat ~250 km to the north. The majority of fish remained within the lagoon system until mid-October, although some fish dispersed earlier and some of them appeared to disperse temporarily (i.e., exited the system for at least 14 consecutive days before returning). Larger fish were more likely to disperse before mid-October than smaller fish and may have moved to other estuaries or the inner continental shelf. Fish that dispersed after mid-October were more likely to return to the lagoon system the following spring than were fish that dispersed before mid-October. In 2008, fish returned to the system between 7 February and 7 April. Dispersals and returns most closely followed seasonal changes in mean water temperature, but photoperiod and other factors also may have played a role in large-scale movements of Summer Flounder.