4 resultados para Health planning - Government policy

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A preliminary survey was conducted among the fishermen in five selected villages in Edozhigi L.G.A. of Niger State. One hundred and fifty fishermen were randomly selected and interviewed to find out the impact of Niger State fisheries legislation on fisheries conservation resources in the area. The analysis of data collected using descriptive statistics indicated that undersized mesh of gill nets, beach seines and traps are being used unabated. Also, fenced barriers across the entrance of flood plain ponds and Ex-bow lakes from the main stream are in the area. The fisheries rules and regulations implementers are rarely seen or not seen at all in the area. The decreasing nature of fish catches was detected. It is observed that government policy on fish conversation is neglected due to inadequate or lack of funding for meaningful extension and implementation of the fisheries rules and regulations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stories are helping us learn more about the livelihoods of the fishers and farmers with whom we work in eastern India. We are engaged with these communities in processes and activities aimed at improving their lives and promoting changes in government policy and service delivery in aquaculture and fisheries. Stories are told in several languages by women and men who fish and farm, about their lives, their livelihoods and significant changes they have experienced. We also record stories as narrated to us by colleague-informants. The written and spoken word, photographs, drawings and films – all are used to document the stories of people’s lives, sometimes prompted by questions as simple as “What do people talk about in the village?” Through the power of language, stories can be an entry point into livelihoods programming, monitoring and evaluation, conflict transformation and ultimately a way of giving life to a rights-based approach to development. (PDF contains 10 pages).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solomon Islands has a population of just over half a million people, most of whom are rural-based subsistence farmers and fishers who rely heavily on fish as their main animal-source food and for income. The nation is one of the Pacific Island Counties and Territories; future shortfalls in fish production are projected to be serious, and government policy identifies inland aquaculture development as one of the options to meet future demand for fish. In Solomon Islands, inland aquaculture has also been identified as a way to improve ood and nutrition security for people with poor access to marine fish. This report undertaken by a Worldfish study under the CGIAR Research Program on Aquatic Agricultural Systems explores the e potential role of land-based aquaculture of Mozambique tilapia in Solomon Islands as it relates to household food and nutrition security. This nutrition survey aimed to benchmark the foods and diets of households newly involved in small homestead tilapia ponds and their neighboring households in the central region of Malaita, the most populous island of all the provinces in Solomon Islands. Focus group discussions and semistructured interviews were employed in 10 communities (five inland and five coastal), four clinics, and five schools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past 50 years, economic and technological developments have dramatically increased the human contribution to ambient noise in the ocean. The dominant frequencies of most human-made noise in the ocean is in the low-frequency range (defined as sound energy below 1000Hz), and low-frequency sound (LFS) may travel great distances in the ocean due to the unique propagation characteristics of the deep ocean (Munk et al. 1989). For example, in the Northern Hemisphere oceans low-frequency ambient noise levels have increased by as much as 10 dB during the period from 1950 to 1975 (Urick 1986; review by NRC 1994). Shipping is the overwhelmingly dominant source of low-frequency manmade noise in the ocean, but other sources of manmade LFS including sounds from oil and gas industrial development and production activities (seismic exploration, construction work, drilling, production platforms), and scientific research (e.g., acoustic tomography and thermography, underwater communication). The SURTASS LFA system is an additional source of human-produced LFS in the ocean, contributing sound energy in the 100-500 Hz band. When considering a document that addresses the potential effects of a low-frequency sound source on the marine environment, it is important to focus upon those species that are the most likely to be affected. Important criteria are: 1) the physics of sound as it relates to biological organisms; 2) the nature of the exposure (i.e. duration, frequency, and intensity); and 3) the geographic region in which the sound source will be operated (which, when considered with the distribution of the organisms will determine which species will be exposed). The goal in this section of the LFA/EIS is to examine the status, distribution, abundance, reproduction, foraging behavior, vocal behavior, and known impacts of human activity of those species may be impacted by LFA operations. To focus our efforts, we have examined species that may be physically affected and are found in the region where the LFA source will be operated. The large-scale geographic location of species in relation to the sound source can be determined from the distribution of each species. However, the physical ability for the organism to be impacted depends upon the nature of the sound source (i.e. explosive, impulsive, or non-impulsive); and the acoustic properties of the medium (i.e. seawater) and the organism. Non-impulsive sound is comprised of the movement of particles in a medium. Motion is imparted by a vibrating object (diaphragm of a speaker, vocal chords, etc.). Due to the proximity of the particles in the medium, this motion is transmitted from particle to particle in waves away from the sound source. Because the particle motion is along the same axis as the propagating wave, the waves are longitudinal. Particles move away from then back towards the vibrating source, creating areas of compression (high pressure) and areas of rarefaction (low pressure). As the motion is transferred from one particle to the next, the sound propagates away from the sound source. Wavelength is the distance from one pressure peak to the next. Frequency is the number of waves passing per unit time (Hz). Sound velocity (not to be confused with particle velocity) is the impedance is loosely equivalent to the resistance of a medium to the passage of sound waves (technically it is the ratio of acoustic pressure to particle velocity). A high impedance means that acoustic particle velocity is small for a given pressure (low impedance the opposite). When a sound strikes a boundary between media of different impedances, both reflection and refraction, and a transfer of energy can occur. The intensity of the reflection is a function of the intensity of the sound wave and the impedances of the two media. Two key factors in determining the potential for damage due to a sound source are the intensity of the sound wave and the impedance difference between the two media (impedance mis-match). The bodies of the vast majority of organisms in the ocean (particularly phytoplankton and zooplankton) have similar sound impedence values to that of seawater. As a result, the potential for sound damage is low; organisms are effectively transparent to the sound – it passes through them without transferring damage-causing energy. Due to the considerations above, we have undertaken a detailed analysis of species which met the following criteria: 1) Is the species capable of being physically affected by LFS? Are acoustic impedence mis-matches large enough to enable LFS to have a physical affect or allow the species to sense LFS? 2) Does the proposed SURTASS LFA geographical sphere of acoustic influence overlap the distribution of the species? Species that did not meet the above criteria were excluded from consideration. For example, phytoplankton and zooplankton species lack acoustic impedance mis-matches at low frequencies to expect them to be physically affected SURTASS LFA. Vertebrates are the organisms that fit these criteria and we have accordingly focused our analysis of the affected environment on these vertebrate groups in the world’s oceans: fishes, reptiles, seabirds, pinnipeds, cetaceans, pinnipeds, mustelids, sirenians (Table 1).