18 resultados para Harold A. Innis
em Aquatic Commons
Resumo:
I. Scientific Issues Posed by OECOS II. Participant Contributions to the OECOS Workshop A. ASPECTS OF PHYTOPLANKTON ECOLOGY IN THE SUBARCTIC PACIFIC Microbial community compositions by Karen E. Selph Subarctic Pacific lower trophic interactions: Production-based grazing rates and grazing-corrected production rates by Nicholas Welschmeyer Phytoplankton bloom dynamics and their physiological status in the western subarctic Pacific by Ken Furuya Temporal and spatial variability of phytoplankton biomass and productivity in the northwestern Pacific by Sei-ichi Saitoh, Suguru Okamoto, Hiroki Takemura and Kosei Sasaoka The use of molecular indicators of phytoplankton iron limitation by Deana Erdner B. IRON CONCENTRATION AND CHEMICAL SPECIATION Iron measurements during OECOS by Zanna Chase and Jay Cullen 25 The measurement of iron, nutrients and other chemical components in the northwestern North Pacific Ocean by Kenshi Kuma The measurement of iron, nutrients and other chemical components in the northwestern North Pacific Ocean by Kenshi Kuma C. PHYSICAL OCEANOGRAPHY, FINE-SCALE DISTRIBUTION PATTERNS AND AUTONOMOUS DRIFTERS The use of drifters in Lagrangian experiments: Positives, negatives and what can really be measured by Peter Strutton The interaction between plankton distribution patterns and vertical and horizontal physical processes in the eastern subarctic North Pacific by Timothy J. Cowles D. MICROZOOPLANKTON Microzooplankton processes in oceanic waters of the eastern subarctic Pacific: Project OECOS by Suzanne Strom Functional role of microzooplankton in the pelagic marine ecosystem during phytoplankton blooms in the western subarctic Pacific by Takashi Ota and Akiyoshi Shinada E. MESOZOOPLANKTON Vertical zonation of mesozooplankton, and its variability in response to food availability, density stratification, and turbulence by David L. Mackas and Moira Galbraith Marine ecosystem characteristics and seasonal abundance of dominant calanoid copepods in the Oyashio region by Atsushi Yamaguchi, Tsutomu Ikeda and Naonobu Shiga OECOS: Proposed mesozooplankton research in the Oyashio region, western subarctic Pacific by Tsutomu Ikeda Some background on Neocalanus feeding by Michael Dagg Size and growth of interzonally migrating copepods by Charles B. Miller Growth of large interzonal migrating copepods by Toru Kobari F. MODELING Ecosystem and population dynamics modeling by Harold P. Batchelder III. Reports from Workshop Breakout Groups A. PHYSICAL AND CHEMICAL ASPECTS WITH EMPHASIS ON IRON AND IRON SPECIATION B. PHYTOPLANKTON/MICROZOOPLANKTON STUDIES C. MESOZOOPLANKTON STUDIES IV. Issues arising during the workshop A. PHYTOPLANKTON STOCK VARIATIONS IN HNLC SYSTEMS AND TROPHIC CASCADES IN THE NANO AND MICRO REGIMES B. DIFFERENCES BETWEEN EAST AND WEST IN SITE SELECTION FOR OECOS TIME SERIES C. TIMING OF OECOS EXPEDITIONS D. CHARACTERIZATION OF PHYSICAL OCEANOGRAPHY V. Concluding Remarks VI. References (109 page document)
Resumo:
This document presents the results of the first three monitoring events to track the recovery of a repaired coral reef injured by the M/V Elpis vessel grounding incident of November 11, 1989. This grounding occurred within the boundaries of what at the time was designated the Key Largo National Marine Sanctuary (NMS), now designated the Key Largo NMS Existing Management Area within the Florida Keys National Marine Sanctuary (FKNMS). Pursuant to the National Marine Sanctuaries Act (NMSA) 16 U.S.C. 1431 et seq., and the Florida Keys National Marine Sanctuary and Protection Act (FKNMSPA) of 1990, NOAA is the federal trustee for the natural and cultural resources of the FKNMS. Under Section 312 of the NMSA, NOAA has the authority to recover monetary damages for injury, destruction, or loss of Sanctuary resources, and to use the recovered monies to restore injured or lost sanctuary resources within the FKNMS. The restoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental and anthropogenic disturbances of the site over time. To evaluate restoration success, reference habitats adjacent to the restoration site are concurrently monitored to compare the condition of restored reef areas with natural coral reef areas unimpacted by the vessel grounding. Restoration of the site was completed September 1995, and thus far three monitoring events have occurred; one in the summer of 2004, one in the summer of 2005, and the latest in the summer of 2007. The monitoring in 2004 was in the nature of a “pilot project,” or proof of concept. Only the quantitative results of the 2005 and 2007 monitoring are presented and discussed. Monitoring has consisted of assessment of the structural stability of limestone boulders used in the restoration and comparison of the coral communities on the boulders and reference areas. Corals are divided into Gorgonians, Milleporans, and Scleractinians. Coral densities at the Restored and Reference areas for the 2005 and 2007 events are compared, and it is shown that the densities of all taxa in the Restored area are greater by 2007, though not significantly so. For the Scleractinians, number and percentage of colonies by species, as well as several common biodiversity indices are provided. The greater biodiversity of the Restored area is evidenced. Also, size-class frequency distributions for Agaricia spp. (Scleractinia) are presented. These demonstrate the approaching convergence of the Restored and Reference areas in this regard. An inter-annual comparison of densities, within both areas, for all three Orders, is presented. The most noteworthy finding was the relative consistency across time for all taxa in each area. Finally, certain anomalies regarding species settlement patterns are presented. (PDF contains 48 pages.)
Resumo:
This document presents the results of the first two monitoring events to track the recovery of a repaired coral reef injured by the M/V Wellwood vessel grounding incident of August 4, 1984. This grounding occurred within the boundaries of what at the time was designated the Key Largo National Marine Sanctuary (NMS), now designated the Key Largo NMS Existing Management Area within the Florida Keys National Marine Sanctuary (FKNMS). Pursuant to the National Marine Sanctuaries Act (NMSA) 16 U.S.C. 1431 et seq., and the Florida Keys National Marine Sanctuary and Protection Act (FKNMSPA) of 1990, NOAA is the federal trustee for the natural and cultural resources of the FKNMS. Under Section 312 of the NMSA, NOAA has the authority to recover monetary damages for injury, destruction, or loss of Sanctuary resources, and to use the recovered monies to restore injured or lost sanctuary resources within the FKNMS. The restoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental and anthropogenic disturbances of the site over time. To evaluate restoration success, reference habitats adjacent to the restoration site are concurrently monitored to compare the condition of restored reef areas with “natural” coral reef areas unimpacted by the vessel grounding or other injury. Restoration of the site was completed on July 22, 2002, and thus far two monitoring events have occurred; one in the Fall of 2004, and one in the Summer/Fall of 2006. The monitoring has consisted of: assessment of the structural stability of restoration modules and comparison of the coral recruitment conditions of the modules and reference sites. Corals are divided into Gorgonians, Milleporans, and Scleractinians and (except where noted) recruits are defined as follows: Gorgonians—maximum size (height) 150 mm at first monitoring event, 270 mm at second; Milleporans—maximum size (height) 65 mm at first event, 125 mm at second; Scleractinians—maximum size (greatest diameter) 50 mm at second event (only one species was size-classed at first event, at smaller size). Recruit densities at the restored and reference areas for each event are compared, as are size-class frequency distributions. For the Scleractinians, number and percentage of recruits by species, as well as several common biodiversity indices are provided. Finally, a qualitative comparison of recruit substrate settlement preference is indicated. Generally, results indicate that restored areas are converging on reference areas, based on almost all parameters examined, with one noted exception. Further monitoring is planned and the trends are anticipated to continue; close attention will be paid to the indicated anomaly. (PDF contains 63 pages.)
Resumo:
This document presents the results of the monitoring of a repaired coral reef injured by the M/V Connected vessel grounding incident of March 27, 2001. This grounding occurred in Florida state waters within the boundaries of the Florida Keys National Marine Sanctuary (FKNMS). The National Oceanic and Atmospheric Administration (NOAA) and the Board of Trustees of the Internal Improvement Trust Fund of the State of Florida, (“State of Florida or “state”) are the co-trustees for the natural resources within the FKNMS and, thus, are responsible for mediating the restoration of the damaged marine resources and monitoring the outcome of the restoration actions. The restoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental and anthropogenic disturbances of the site over time. The monitoring program at the Connected site was to have included an assessment of the structural stability of installed restoration modules and biological condition of reattached corals performed on the following schedule: immediately (i.e., baseline), 1, 3, and 6 years after restoration and following a catastrophic event. Restoration of this site was completed on July 20, 2001. Due to unavoidable delays in the settlement of the case, the “baseline” monitoring event for this site occurred in July 2004. The catastrophic monitoring event occurred on August 31, 2004, some 2 ½ weeks after the passage of Hurricane Charley which passed nearby, almost directly over the Dry Tortugas. In September 2005, the year one monitoring event occurred shortly after the passage of Hurricane Katrina, some 70 km to the NW. This report presents the results of all three monitoring events. (PDF contains 37 pages.)
Resumo:
This document presents the results of the monitoring of a repaired coral reef injured by the M/V Jacquelyn L vessel grounding incident of July 7, 1991. This grounding occurred in Florida state waters within the boundaries of the Florida Keys National Marine Sanctuary (FKNMS). The National Oceanic and Atmospheric Administration (NOAA) and the Board of Trustees of the Internal Improvement Trust Fund of the State of Florida, (“State of Florida or “state”) are the co-trustees for the natural resources within the FKNMS and, thus, are responsible for mediating the restoration of the damaged marine resources and monitoring the outcome of the restoration actions. The restoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental and anthropogenic disturbances of the site over time. The monitoring program at the Jacquelyn L site was to have included an assessment of the structural stability of installed restoration modules and biological condition of reattached corals performed on the following schedule: immediately (i.e., baseline), 1, 3, and 6 years after restoration and following a catastrophic event. Restoration of this site was completed on July 20, 2000. Due to unavoidable delays in the settlement of the case, the “baseline” monitoring event for this site occurred in July 2004. The catastrophic monitoring event occurred on August 31, 2004, some 2 ½ weeks after the passage of Hurricane Charley which passed nearby, almost directly over the Dry Tortugas. In September 2005, the year one monitoring event occurred shortly after the passage of Hurricane Katrina, some 70 km to the NW. This report presents the results of all three monitoring events. (PDF contains 31 pages.)
Resumo:
This document presents the results of baseline monitoring of a repaired coral reef injured by the M/V Wave Walker vessel grounding incident of January 19, 2001. This grounding occurred in Florida state waters within the boundaries of the Florida Keys National Marine Sanctuary (FKNMS). The National Oceanic and Atmospheric Administration (NOAA) and the Board of Trustees of the Internal Improvement Trust Fund of the State of Florida, (“State of Florida or “state”) are the co-trustees for the natural resources within the FKNMS. This report documents the efficacy of the restoration effort, the condition of the restored reef area two year and four months post-effort, and provides a picture of surrounding reference areas, so as to provide a basis for future comparisons by which to evaluate the long-term success of the restoration. (PDF contains 25 pages.)
Resumo:
This report owes its genesis to the foresight and enthusiam of Dr. Kazuhiro Mizue. By happy circumstance, Professor Mizue contacted me in 1983 with his visionary ideas on cooperative programs. He noted that the time was right because the Japan Society for the Promotion of Science and the National Science Foundation had mutually given priority to cooperative programs in marine biology. I therefore agreed to act as the U.S. coordinator and proposed to NSF, a short trip to Japan to negotiate site visits and timing with ten previously appointed Japanese scientists and, if that trip were successful, to negotiate a joint research project, possibly followed by a joint seminar. (PDF file contains 528 pages.)
Resumo:
The ecology and reproductive biology of the leatherback turtle (Dennochelys coriacea) was studied on a high-energy nesting beach near Laguna Jalova, Costa Rica, between 28 March and 8 June 1985. The peak of nesting was between 15 April and 21 May. Leatherbacks here measured an average 146.6 cm straightline standard carapace length and laid an average 81.57 eggs. The eggs measured a mean 52.12 mm diameter and weighed an average of 85.01 g. Significant positive relationships were found between the carapace lengths of nesters and their clutch sizes and average diameter and weight of eggs. The total clutch weighed between 4.02 and 13.39 kg, and yolkless eggs accounted for an average 12.4% of this weight. The majority of nesters dug shallow (<24 cm) body pits and spent an average 81 minutes at the nest site. A significant number of c1utcbes were laid below the berm crest. In a hatchery 42.2% of the eggs hatched, while in natural nests 70.2% hatched. The average hatchling carapace length was 59.8 mm and weight was 44.6 g. The longevity of leatherback tracks and nests on the beach was affected by weather. One nester was recaptured about one year later off the coast of Mississippi, U.S.A. Egg poaching was intense on some sections of the Costa Rican coast. Four aerial surveys in four different months provided the basis for comparing density of nesting on seven sectors of the Caribbean coast of Costa Rica. The beach at Jalova is heavily used by green turtles (Chelonia mydJJs) after the leatherback nesting season. The role of the Parque Nacional Tortuguero in conserving the leatherback and green turtle is discussed.(PDF file contains 20 pages.)
Resumo:
Growth data obtained from a ten-year collection of scales from Maryland freshwater fish is presented, in this report,in graphs and tables especially designed to be useful for Maryland fishery management. (PDF contains 40 pages)
Resumo:
Presents a review of the recreational values and economic importance of Maryland Fishing waters. (PDF contains 5 pages)
Resumo:
Contemporary striped bass population modeling efforts on coastal stocks point to a reduced population fecundity in Chesapeake Bay being partially responsible for declining reproduction (Anonymous 1985; Boreman and Goodyear 1984). Fecundity values used in these models were based on earlier work by jackson and tiller (1952), lewis and Bonner (1966), Hollis (1967) and Holland and Yelverton (1973). An important feature to the Boreman and Goodyear (1985) model (FSIM) is an accurate determination of the fecundity weight regression equation used to determine the rate of egg deposition over time. Egg deposition models in turn can be used to determine how reproductive potential is changing over time in response to various management actions, i.e. reducing fishing mortality rates. thus it is imperative to follow population stock structure in the Bay system and to develop a contemporary fecundity relationship for striped bass. This report deals with the gonadal material collected in 1986 and 1987 from a coordinated Maryland field program. Samples were obtained from drift gill net collections during the spawning season from four localities: Potomac Estuary, Upper Bay, Chesapeake and Delaware Canal, and the Choptank Estuary (Figure 1).
Resumo:
A spate of Galapagos books. The phenomenal El Nino. The Galapagos on television. Galapagos tourism. The CDRS Director in the Soviet Union. Saving the Hawaiian Petrel. Wild dogs and land iguanas. Franklin Delano Roosevelt and the Galapagos Islands. More about those bloodthirsty "vampire finches". Auf Wiedersehen, Friedemann! Harold Jefferson Coolidge at eighty. Events and visits at the Darwin Research Station.
Resumo:
Development of a high-speed and high-yield water-powered fish evisceration system (FES) to efficiently preprocess small fish and bycatch for producing minced fish meat is described. The concept of the system is propelling fish in a stream of water through an arrangement of cutting blades and brushes. Eviscerated fish are separated from the viscera and water stream in a dual screen rotary sieve. The FES processed head off fish, weighing 170–500 g, at the rate of 300 fish/min when used with an automatic heading machine. Yields of mince produced from walleye pollock, Theragra chalcogramma; and Pacific whiting, Merluccius productus; processed by the FES ranged between 43% and 58%. The maximum yield of minced muscle from fish weighing over 250 g was 52%, and the yield of 250 g was 58%. Test results indicated that surimi made from minced meat recovered from fish processed with the FES was comparable in quality to commercial grade surimi from conventional systems. Redesigned for commercial operation in the Faeroe Islands (Denmark), the system effectively processed North Atlantic blue whiting, Micromesistius poutassou, with an average weight of 110 g at a constant rate of 500–600 fish/min, producing deboned mince feeding a surimi processing line at a rate of 2.0 t/h. Yields of mince ranged from 55% to 63% from round fish. Surimi made from the blue whiting mince meat produced by the FES was comparable to surimi commercially produced from blue whiting by Norway and France and sold into European markets.
Resumo:
The condition of soft-textured flesh in commercially harvested sablefish, Anoplopoma fimbria, from southeastern Alaska was investigated by National Marine Fisheries Service (NMFS) scientists from the Alaska Fisheries Science Center’s Auke Bay Laboratories (ABL) in Alaska and the Northwest Fisheries Science Center in Seattle, Wash. Sablefish were sampled by longline, pot, and trawl at five sites around Chichagof Island at depths of 259–988 m in the summer of 1985 and at depths of 259–913 m in the winter of 1986. At the time of capture and data collection, sablefish were categorized as being “firm” or “soft” by visual and tactile examination, individually weighed, measured for length, and sexed. Subsamples of the fish were analyzed and linear regressions and analyses of variance were performed on both the summer (n = 242) and winter (n = 439) data for combinations of chemical and physical analyses, depth of capture, weight vs. length, flesh condition, gonad condition, and sex. We successfully identified and selected sablefish with firm- and soft-textured flesh by tactile and visual methods. Abundance of firm fish in catches varied by season: 67% in winter and 40% in summer. Winter catches may give a higher yield than summer catches. Abundance of firm fish catches also varied with depth. Firm fish were routinely found shallower than soft fish. The highest percentage of firm fish were found at depths less than 365 m in summer and at 365–730 m in winter, whereas soft fish were usually more abundant at depths greater than 731 m. Catches of firm fish declined with increasing depth. More than 80% of the fish caught during winter at depths between 365 and 730 m had firm flesh, but this declined to 48% at these depths in summer. Longlines and pots caught similar proportions of firm and soft fish with both gears catching more firm than soft fish. Trawls caught a higher proportion of soft fish compared to longlines and pots in winter. Chemical composition of “firm” and “soft” fish differed. On average “soft” fish had 14% less protein, 12% more lipid, and 3% less ash than firm fish. Cooked yields from sablefish with soft-textured flesh were 31% less than cooked yields from firm fish. Sablefish flesh quality (firmness) related significantly to the biochemistry of white muscle with respect to 11 variables. Summer fish of all flesh conditions averaged 6% heavier than winter fish. Regulating depth of fishing could increase the yield from catches, but the feasibility and benefits from this action will require further evaluation and study. Results of this study provide a basis for reducing the harvest of sablefish with soft flesh and may stimulate further research into the cause and effect relationship of the sablefish soft-flesh phenomenon.