8 resultados para HPLC-ESI-MSn
em Aquatic Commons
Resumo:
Secondary metabolites are produced by aquatic plants, and in some instances, exudation of these metabolites into the surrounding water has been detected. To determine whether infestations of Eurasian watermilfoil or hydrilla produce such exudates, plant tissues and water samples were collected from laboratory cultures and pond populations and were analyzed using solid phase extraction, HPLC, and various methods of mass spectrometry including electrospray ionization, GC/MS, electron impact and chemical ionization. Previously reported compounds such as tellimagrandin II (from Eurasian watermilfoil) and a caffeic acid ester (from hvdrilla), along with a newly discovered flavonoid, cyanidin 3 dimalonyl glucoside (from hydrilla), were readily detected in plant tissues used in this research but were not detected in any of the water samples. If compounds are being released, as suggested by researchers using axenic cultures, we hypothesize that they may be rapidly degraded by bacteria and therefore undetectable.
Resumo:
The biomass of the phytoplankton and its composition is one of the most important factors in water quality control. Determination of the phytoplankton assemblage is usually done by microscopic analysis (Utermöhl's method). Quantitative estimations of the biovolume, by cell counting and cell size measurements, are time-consuming and normally are not done in routine water quality control. Several alternatives have been tried: computer-based image analysis, spectral fluorescence signatures, flow cytometry and pigment fingerprinting aided by high performance liquid chromatography (HPLC). The latter method is based on the fact that each major algal group of taxa contains a specific carotenoid which can be used for identification and relative quantification of the taxa in the total assemblage. This article gives a brief comparative introduction to the different techniques available and presents some recent results obtained by HPLC-based pigment fingerprinting, applied to three lakes of different trophic status. The results show that this technique yields reliable results from different lake types and is a powerful tool for studying the distribution pattern of the phytoplankton community in relation to water depth. However, some restrictions should be taken into account for the interpretation of routine data.
Resumo:
Identification of venomous species of Persian Gulf cone snails and characterization of venom composition and their features is so important from the point of medical importance. Marine cone snails from the genus Conus are estimated to consist of up to 700 species. The venom of cone snails has yielded a rich source of novel neuroactive peptides or conotoxins. The present study was aimed to study the analgesic effect of Persian Gulf Conus textile and its comparison with morphine in mouse model. The specimens of Conus textile were collected of Larak Island from depth of 7 m. The collected samples were transferred to laboratory alive and were stored at -700 c. he veno s ducts were separated and ho ogenized with deionized water he ixture centrifuged at rp for inutes upernatant was considered as extracted veno and stored at - C after lyophylization. The protein profile of venom determined by using SDS-PAGE and HPLC used to investigate the extracted venom and to evaluate the analgesic activity, formalin test was carried out. SDS-PAGE indicated several bands ranged between 6 and 250 kDa. Chromatogram of the venom demonstrated more than 44 large and small fractions. The amount of 10 ng of Conus crude venom and analgesic peptide showed the best anti-pain activity in formalin test. No death observed up to 100 mg/kg, which is 250,000 times higher than the effective dose.Venom characterization of Persian Gulf Conus textile may be of medical importance and potential for new pharmaceutical drugs as well.
Resumo:
Study on the biomarkers types to assess health status of marine ecosystems in environmental biomonitoring has an important value. Accordingly, accumulation of polycyclic aromatic hydrocarbons(PAHs) in sediment, water and tissues (liver and gill) of mudskipper(i.e. Boleophthalmus dussumieri) and some physiological responses like lysosomal membrane change performed on haemocytes, stability of red blood cell membrane and the Glutathione-S Transferase (GST) activity in the liver were measured in mudskipper. Samples were obtained from five sites along north western coast of the Persian Gulf (Khuzestan coast). Red blood cell membrane changes after different concentration of PAHs at different time was also studied to evaluate impact of PAHs compound on cell membrane. PAHs concentration was measured by HPLC method. The activity of GST enzyme was analysed by spectrophotometric method. Lysosomal membrane change was measured by NRR time method and stability of red blood cell membrane was evaluated by EOF test. Total PAH concentrations in the coastal sea water, the sediments, the liver and the gill tissues ranged between 0.80-18.34 μg/l, 113.50-3384.34 ng g-1 (dry weight), 3.99-46.64 ng g-1 dw and 3.11-17.76 ng g-1 dw, respectively. Highest PAHs pollution was found at Jafari while the lowest was detected at Bahrakan sampling sites. The lowest enzymatic activity was identified at Bahrakan (7.19 ± 1.541 nmol/mg protein/min), while the highest was recorded at Jafari (46.96 ± 7.877 nmol/mg protein/min). Comparative analysis of GST activity in the liver of mudskippers showed significant difference (p < 0.05) between the locations of Jafari and Bahrakan, and with other sites. Moreover, no significant difference was detected between the locations of Arvand, Zangi and Samayeli (p < 0.05). The mean RT was below 90 minutes in all sampling sites. Values of mean RT of the dye ranged from 34 (for the blood samples of mudskipper collected from Jafari site) to 78 minutes (for the blood samples of mudskipper collected from Bahrakan site). Spatial evaluation revealed the longest RT in fish from Bahrakan as compared with those from other sites. Preliminary results showed a significant difference (p < 0.05) among sampling sites except between Arvand and Zangi (p > 0.05). Osmotic fragility curves indicated that erythrocytes collected from mudskippers at Jafari were the most 009 fragile followed by Zangi> Arvand> Samayeli> and Bahrakan. The mean erythrocyte fragility was significantly higher at Jafari site (p < 0.05) when compared to other sites. Significant differences were found between the various sites (p < 0.05).The result indicated no significant differences between the control and treatments of mudskipper RBC exposed to field concentrations of PAHs (P>0.05). The results further indicated significant differences (P<0.05) between the control and treatments of mudskipper RBC exposed to acute. Potency Divisor concentrations. It is clear from the present result that chronic. Potency Divisor concentrations protect red cells against osmotic hemolysis. This study, however, showed that PAH concentrations in this region are not higher than the available standards. The findings showed that Lysosomal membrane destabilization, liver GST activities and fragility of red cell membrane are highly sensitive in the mudskipper, B. dussumieri. Thus, mudskipper perceived to be good sentinel organisms for PAH pollution monitoring. Sediment PAH concentrations were strongly correlated with biomarkers, indicating that PAH type pollutants were biologically available to fish. One of the possible risk assessment implications of this study is that biomarkers can be applied not only to characterize biological effects of pollution exposures, but also to determine the bioavailability of pollution in aquatic systems. The results also indicated that PAHs compound possess anti haemolytic property.
Resumo:
Green scat namely as Scatophagus argus argus is a venomous aquarium fish belonging to Scatophagidae family. It can induce painful wounds in injured hand with partial paralysis to whom that touch the spines. Dorsal and ventral rough spines contain cells that produce venom with toxic activities. According to unpublished data collected from local hospitals in southern coastal region of Iran, S. argus is reported as a venomous fish. Envenomation induces clinical symptoms such as local pain, partial paralysis, erythema and itching. In the present study green scat (spotted scat) was collected from Persian Gulf coastal waters. SDS-PAGE indicated 12 distinct bands in the venom ranged between 10-250 KDa. The crude venom had hemolytic activity on human erythrocytes (1%) with an LC100 (Lytic Concentration) of about 1.7 μg. The crude venom can release 813 μg proteins from 0.5% casein. Phospholipase C activity was recorded at 3.125 μg of total venom. Our findings showed that the edematic activity remained over 48 h after injection. The purification of the venom was done by HPLC and 30 peaks were obtained within 80 min but only one peak in 68 min retention time showed hemolytic activity at 90% acetonitril was isolated. The area percentage of the hemolytic protein showed that this hemolytic protein consist of 32 percent of total proteins and its molecular weight was 72 KDa in SDS_PAGE. The results demonstrated that crude venom extracted from Iranian coastal border has different toxic and enzymatic activities.
Resumo:
Linear alkylbenzene sulfonate (LAS) are widely used in detergent industry. Due to contaminants entering the water, and the effects of their accumulation in fish, LAS, has a great importance in environmental pollution. In the present study, accumulation of LAS and its histological effects on gill tissue, liver and kidney of Caspian kutum (Rutilus frisii kutum) were studied. Caspian kutum is the most important and most valuable teleosts of the Caspian Sea. Due to releasing Caspian Kutum in rivers and Anzali Lagoon and unlimited entry of wastewater to the aquatic ecosystem, research on the impact of LAS on Caspian kutum is important. In the present study, fish exposed to sublethal concentrations of LAS (0.58, 1.16 and 2.32 mg/l) for 192 hours. Control treatments with three replicates at 0, 24, 48, 72, 96 and 192 hours were done. For assessments of the histological effects of LAS, tissue sections prepared and by using Hematoxylin - Eosin were stained, then the prepared sections, examined by light microscopy. For determination of the bio accumulation of LAS, the soxhlet extraction and solid phase extraction was performed to determine the amount of LAS using HPLC with fluorescence detector. According to results average of bioconcentration factor and LAS concentrations in fish had reached stable levels after approximately 72 h and thus represented steady state BCF values in this species. The value of steady-state bio-concentration factor of total LAS was 33.96 L.Kg- 1 and for each of the homologous C10-n-LAS, C11-n-LAS, C12-n-LAS and C13-n- LAS were 3.84, 6.15, 8.58 and 15.57 L.Kg-1 respectively. According to the results obtained in gills exposed to LAS, histopathological alteration include hypertrophy, lifting of lamella epithelium, edema, clubbing of lamellae hyperplasia, lamellar fusion and aneurysm were seen. In liver tissue exposed to three concentrations of LAS, congestion and dilation of sinusoids, irregular-shaped nuclei and degeneration in the hepatocyte, vacuolar degeneration and necrosis were observed. In kidney exposed to three concentrations of LAS, reduction of the interstitial haematopoietic tissue, degeneration in the epithelial cells of renal tubule, tubular degeneration, necrosis, shrinkage and luminal occlusion were observed. According to the results the most alteration due to exposure to LAS was seen in the gill tissue. None of the control samples showed histological effects of LAS.
Resumo:
Spirulina is a filamentous cyanobacteria with many applications in food and drug industries, as a food in human, aquaculture, vet and poultry industries… . Semi and mass culture of Spirulina carries out in different countries. This study was carried out in five phases in order to produce this microalga in Iran. The first phase, Spirulina pure stock was imported from Indonesia. After identification of species, it was cultured in laboratory until we took 20 liters of biomass. The semi-mass culture was carried out in green house. Cell concentration and size of Spirulina were recorded during culture daily and their growth rates were calculated. After two weeks, when the size of Spirulina was suitable, biomass of Spirulina was harvested then accumulated Spirulina weighted and dried in 24 hours in laboratory. In order to microbiological study, the samples of Spirulina (dry and fresh) were cultured on blood agar medium and coliforms were counted. The chemical composition of produced Spirulina was measured by standard methods. Fatty acid and amino acid profiles were acquired by GC and HPLC instruments, respectively. The amount of chlorophyll in Spirulina was determined by spectroscopy method. Also astaxanthin pigment as an important carotenoid was measured by HPLC in Spirulina and Penaeus semisulcatus larvae fed on Spirulina. At final phase of this project, larva fed on produced Spirulina (biomass and dry powder) was compared to Z plus, microencapsulated Spirulina (M.C.F) and Chaetoceros algae as control. This experiment was carried from zoa to early post larvae stage then survival and growth rate of larvae were recorded. The growth rate of larvae was evaluated with ANOVA test and survival rate of treatments was assessed by Log Rank (Mantel –Cox) test. Also during larvae stage, two parameters of water such as nitrate and nitrite were measured in zoa, mysis and post larvae stages. The results of this study were shown that colifom counts were 1.85×106 and 92.3×105 coliform per ml in fresh and dry spirulina, respectively. Protein percent of dry spirulina was 50.93 % (dry weight) and the amount of astaxanthin in spirulina and larvae fed on spirulina were 0.21 and 0.01 mg/kg, respectively. The most survival rate of larvae were observed in zoa III (88.8%) with Z plus supplement treatment, in mysis III (76.5%) combination of Z plus and dry spirulina in comparative between treatments. Larvae growth (4.5mm) of control in early post larvae was the best.
Resumo:
Seven varieties of indigenous Phytolacca dodecwulra L'Herrit (Phytolaccaceae) were field-tried for molluscicidal potency. Varieties (U96) and (U95) collected from Kabarole and Kabale respectively were the most potent with LD90 equal to 2.54 and 6.46 mg.t-· respectively. Water bodies ranging between 4,770 and 347,510 Iitres in Kibimba rice fields were treated with up to 50mg.t-· Snails kills were monitored every three months and 92 - 100% mortality rates were realized. HPLC fingerprints revealed the two P. dodecandra varieties to contain highest concentration of the active principle, oleanoglycotoxin- A or lemmatoxin - A.