2 resultados para HORIZONTAL CONVECTIVE ROLLS
em Aquatic Commons
Resumo:
In this thesis, producing ability of electricity by horizontal tidal current turbines and installing possibility of these turbines on bridge's piers in the marine environments has been studied to reduce primary implementation costs and make the plan, economical. To do this and to study its feasibility, the exerted forces from installing horizontal tidal current turbines were compared with the forces applied to the bridge structure during designing process (given in the Standards). Then, the allowable ranges of the overloading which is tolerable by the piers of the bridge were obtained. Accordingly, it is resulted that for installing these turbines, the piers of the existing bridges are required to be strengthened. Because of increasing usage of renewable powers and as a suggestion, the exerted forces from installing turbine for loading coefficients of different Standards are given. Finally as an example, preliminary designing of a horizontal tidal current turbine was carried out for Gesham Channel and the forces exerted from turbine to the bridge's pier were calculated for the future usage in order to create a test site of real dimensions.
Resumo:
Caspian Sea with its unique characteristics is a significant source to supply required heat and moisture for passing weather systems over the north of Iran. Investigation of heat and moisture fluxes in the region and their effects on these systems that could lead to floods and major financial and human losses is essential in weather forecasting. Nowadays by improvement of numerical weather and climate prediction models and the increasing need to more accurate forecasting of heavy rainfall, the evaluation and verification of these models has been become much more important. In this study we have used the WRF model as a research-practical one with many valuable characteristics and flexibilities. In this research, the effects of heat and moisture fluxes of Caspian Sea on the synoptic and dynamical structure of 20 selective systems associated with heavy rainfall in the southern shores of Caspian Sea are investigated. These systems are selected based on the rainfall data gathered by three local stations named: Rasht, Babolsar and Gorgan in different seasons during a five-year period (2005-2010) with maximum amount of rainfall through the 24 hours of a day. In addition to synoptic analyses of these systems, the WRF model with and without surface flues was run using the two nested grids with the horizontal resolutions of 12 and 36 km. The results show that there are good consistencies between the predicted distribution of rainfall field, time of beginning and end of rainfall by the model and the observations. But the model underestimates the amounts of rainfall and the maximum difference with the observation is about 69%. Also, no significant changes in the results are seen when the domain and the resolution of computations are changed. The other noticeable point is that the systems are severely weakened by removing heat and moisture fluxes and thereby the amounts of large scale rainfall are decreased up to 77% and the convective rainfalls tend to zero.