3 resultados para HIGH-ALTITUDE EXPOSURE

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pike, Esox lucius, are present in Loch Callater at their highest altitude and most extreme habitat in the British Isles, with subarctic winter conditions and extended winter ice-cover. The response of pike in this environment is slower growth, due to a shorter growing season and the low availability of forage fish, giving the poorest reported length-at-age for pike in the British Isles. All pike were mature or had spawned in the same year, with gravid ovaries in April and normal recovering ovaries in June-July. As in other lochs with few prey fishes, the larger pike ate small items such as invertebrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyses of blood and liver samples from live captured sea otters and liver samples from beachcast sea otter carcasses off the remote Washington coast indicate relatively low exposure to contaminants, but suggest that even at the low levels measured, exposure may be indicated by biomarker response. Evidence of pathogen exposure is noteworthy - infectious disease presents a potential risk to Washington sea otters, particularly due to their small population size and limited distribution. During 2001 and 2002, 32 sea otters were captured, of which 28 were implanted with transmitters to track their movements and liver and blood samples were collected to evaluate contaminant and pathogen exposure. In addition, liver samples from fifteen beachcast animals that washed ashore between 1991 and 2002 were analyzed to provide historical information and a basis of reference for values obtained from live otters. The results indicate low levels of metals, butyltins, and organochlorine compounds in the blood samples, with many of the organochlorines not detected except polychlorinated biphenyls (PCBs), and a few aromatic hydrocarbons detected in the liver of the live captured animals. Aliphatic hydrocarbons were measurable in the liver from the live captured animals; however, some of these are likely from biogenic sources. A significant reduction of vitamin A storage in the liver was observed in relation to PCB, dibutyltin and octacosane concentration. A significant and strong positive correlation in vitamin A storage in the liver was observed for cadmium and several of the aliphatic hydrocarbons. Peripheral blood mononuclear cell (PBMC) cytochrome P450 induction was elevated in two of 16 animals and may be potentially related to aliphatic and aromatic hydrocarbon exposure. Mean concentration of total butyltin in the liver of the Washington beach-cast otters was more than 15 times lower than the mean concentration reported by Kannan et al. (1998) for Southern sea otters in California. Organochlorine compounds were evident in the liver of beach-cast animals, despite the lack of large human population centers and development along the Washington coast. Concentrations of PCBs and chlordanes (e.g., transchlordane, cis-chlordane, trans-nonachlor, cis-nonachlor and oxychlordane) in liver of Washington beach-cast sea otters were similar to those measured in Aleutian and California sea otters, excluding those from Monterey Bay, which were higher. Mean concentrations of 1,1,1,- trichloro-2,2-bis(p-chlorophyenyl)ethanes (DDTs) were lower, and mean concentrations of cyclohexanes (HCH, e.g., alpha BHC, beta BHC, delta BHC and gamma BHC) were slightly higher in Washington beach-cast otters versus those from California and the Aleutians. Epidemiologically, blood tests revealed that 80 percent of the otters tested positive for morbillivirus and 60 percent for Toxoplasma, the latter of which has been a significant cause of mortality in Southern sea otters in California. This is the first finding of positive morbillivirus titers in sea otters from the Northeast Pacific. Individual deaths may occur from these diseases, perhaps more so when animals are otherwise immuno-compromised or infected with multiple diseases, but a population-threatening die-off from these diseases singly is unlikely while population immunity remains high. The high frequency of detection of morbillivirus and Toxoplasma in the live otters corresponds well with the cause of death of stranded Washington sea otters reported herein, which has generally been attributable to infectious disease. Washington’s sea otter population continues to grow, with over 1100 animals currently inhabiting Washington waters; however, the rate of growth has slowed over recent years. The population has a limited distribution and has not yet reached its carrying capacity and as such, is still considered at high risk to catastrophic events. (PDF contains 189 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brevetoxin uptake was analyzed in 2 common planktivorous fish that are likely foodweb vectors for dolphin mortality events associated with brevetoxin-producing red tides. Fish were exposed to brevetoxin-producing Karenia brevis for 10 h under conditions previously reported to produce optimal uptake of toxin in blood after oral exposure. Striped mullet Mugil cephalus were exposed to a low dose of brevetoxin, and uptake and depuration by specific organs were evaluated over a 2 mo period. Atlantic menhaden Brevoortia tyrannus specimens were used to characterize a higher brevetoxin dose uptake into whole body components and evaluate depuration over 1 mo. We found a high uptake of toxin by menhaden, with a body to water ratio of 57 after a 10 h exposure and a slow elimination with a half life (t1/2) of 24 d. Elimination occurred rapidly from the intestine (t1/2 < 1 wk) and muscle (t1/2 ≈ 1 wk) compartments and redistributed to liver which continued to accumulate body stores of toxin for 4 wk. The accumulation and elimination characteristics of the vectoring capacity of these 2 fish species are interpreted in relation to data from the Florida Panhandle dolphin mortality event of 2004. We show that due to slow elimination rate of brevetoxin in planktivorous fish, brevetoxin-related dolphin mortality events may occur without evidence of a concurrent harmful algal bloom event.