3 resultados para HEARN, LAFCADIO

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vetter (1988) noted that her review of the estimation of the instantaneous natural mortality rate (M) was initiated by a discussion among colleagues that identified M as the single most impor ta nt but least well-estimated parameter in fishery models. A lthough much has been accomplished in the inter vening years, M remains one of the most difficult parameters to estimate in fishery stock assessments. A number of novel approaches using tagging and telemetry data provide promise for making reliable direct estimates of M for a given stock (Hearn et al., 1998 ; Frusher and Hoenig, 2001; Hightower et al., 2001; Latour et al., 2003; Pollock et al., 2004). However, such methods are often impracticable and fishery scientists must approximate M by using estimates made for other stocks of the same or similar species or by predicting M from features of the species’ life history (Beverton and Holt, 1959; Beverton, 1963; Alverson and Carney, 1975; Pauly, 1980; Hoenig, 1983; Peterson and Wroblewski, 1984; Roff, 1984; Gunderson and Dygert, 1988; Chen and Watanabe, 1989; Charnov, 1993; Jensen, 1996; Lorenzen, 1996).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CDRS Research Highlights, 2004. Plants. Social Sciences. Vertebrates. Invasive Species Total Control Plan. Terrestrial Invertebrates. Project Isabela. Marine Sciences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Southern bluefin tuna (SBT) (Thunnus maccoyii) growth rates are estimated from tag-return data associated with two time periods, the 1960s and 1980s. The traditional von Bertalanffy growth model (VBG) and a two-phase VBG model were fitted to the data by maximum likelihood. The traditional VBG model did not provide an adequate representation of growth in SBT, and the two-phase VBG yielded a significantly better fit. The results indicated that significant change occurs in the pattern of growth in relation to a VBG curve during the juvenile stages of the SBT life cycle, which may be related to the transition from a tightly schooling fish that spends substantial time in near and surface shore waters to one that is found primarily in more offshore and deeper waters. The results suggest that more complex growth models should be considered for other tunas and for other species that show a marked change in habitat use with age. The likelihood surface for the two-phase VBG model was found to be bimodal and some implications of this are investigated. Significant and substantial differences were found in the growth for fish spawned in the 1960s and in the 1980s, such that after age four there is a difference of about one year in the expected age of a fish of similar length which persists over the size range for which meaningful recapture data are available. This difference may be a density-dependent response as a consequence of the marked reduction in the SBT population. Given the key role that estimates of growth have in most stock assessments, the results indicate that there is a need both for the regular monitoring of growth rates and for provisions for changes in growth over time (possibly related to changes in abundance) in the stock assessment models used for SBT and other species.