6 resultados para Growth Strategies
em Aquatic Commons
Resumo:
Mangroves are defined as a collection of woody plants and the associated fauna and flora that use a coastal depositional environment. Here the specific effects of salinity changes in mangroves have been examinated.
Resumo:
Pike, Esox lucius, are present in Loch Callater at their highest altitude and most extreme habitat in the British Isles, with subarctic winter conditions and extended winter ice-cover. The response of pike in this environment is slower growth, due to a shorter growing season and the low availability of forage fish, giving the poorest reported length-at-age for pike in the British Isles. All pike were mature or had spawned in the same year, with gravid ovaries in April and normal recovering ovaries in June-July. As in other lochs with few prey fishes, the larger pike ate small items such as invertebrates.
Resumo:
The River Great Ouse is a highly managed large lowland river in eastern England. It drains rich arable land in the Midlands and Eastern England and over the years nutrient concentrations have increased and there is a general perception that the clarity of the water has decreased. The main river channels have been dredged a number of times partly for flood control reasons but also for recreational boating and navigation activities. The period covered by this first report has been used to develop specific methodology and instrumentation for measuring turbidity, suspended solids and underwater irradiance for conditions found in the middle abd lower reaches of the River Great Ouse. Sampling strategies have been developed and an extensive sampling programme is now underway covering phytoplankton, suspended solids and turbidity in relation to algal epiphyte growth on underwater macrophytes. Preliminary data are presented relating light levels on the river bed to the river bed profile, turbidity levels and phytoplankton chlorophyll a concentrations. Studies are underway concerning the extent of macrophyte cover and periphyton densities.
Resumo:
Some results of a line of research explored by the author in recent years, and concerning the small-scale fisheries of Mexico are discussed. Clarity of goals for fisheries management is stressed as a departure point before taking any step towards model building. Age-structured simulation models require input data and parameters such as growth rates, natural mortality, age at first capture and maturity, longevity, the longest possible catch records series, and estimates of numbers caught per age group. The link between each cohort and the following can then be established by means of the Ricker stock recruitment or the Beverton-Holt models. Simulation experiments can then be carried out by changing fishing mortality. Whenever data on profits and costs and catch are available, these can also be analyzed. The use of simulation models is examined with emphasis on the benefits derived from their use for fisheries management.
Resumo:
Abstract—Fisheries often target individuals based on size. Size-selective fishing can create selection differentials on life-history traits and, when those traits have a genetic basis, may cause evolution. The evolution of life history traits affects potential yield and sustainability of fishing, and it is therefore an issue for fishery management. Yet fishery managers usually disregard the possibility of evolution, because little guidance is available to predict evolutionary consequences of management strategies. We attempt to provide some generic guidance. We develop an individual-based model of a population with overlapping generations and continuous reproduction. We simulate model populations under size-selective fishing to generate and quantify selection differentials on growth. The analysis comprises a variety of common life-history and fishery characteristics: variability in growth, correlation between von Bertalanffy growth parameters (K and L∞), maturity rate, natural mortality rate (M), M/K ratio, duration of spawning season, fishing mortality rate (F), maximum size limit, slope of selectivity curve, age at 50% selectivity, and duration of fishing season. We found that each characteristic affected the magnitude of selection differentials. The most vulnerable stocks were those with a short spawning or fishing season. Under almost all life-history and fishery characteristics examined, selection differentials created by realistic fishing mortality rates are considerable.
Resumo:
Age estimates for striped trumpeter (Latris lineata) from Tasmanian waters were produced by counting annuli on the transverse section of sagittal otoliths and were validated by comparison of growth with known-age individuals and modal progression of a strong recruitment pulse. Estimated ages ranged from one to 43 years; fast growth rates were observed for the first five years. Minimal sexual dimorphism was shown to exist between length, weight, and growth characteristics of striped trumpeter. Seasonal growth variability was strong in individuals up to at least age four, and growth rates peaked approximately one month after the observed peak in sea surface temperature. A modified two-phase von Bertalanffy growth function was fitted to the length-at-age data, and the transition between growth phases was linked to apparent changes in physiological and life history traits, including offshore movement as fish approach maturity. The two-phase curve was found to represent the mean length at age in the data better than the standard von Bertalanffy growth function. Total mortality was estimated by using catch curve analysis based on the standard and two-phase von Bertalanffy growth functions, and estimates of natural mortality were calculated by using two empirical models, one based on longevity and the other based on the parameters L∞ and k from both growth functions. The interactions between an inshore gillnet fishery targeting predominately juveniles and an offshore hook fishery targeting predominately adults highlight the need to use a precautionary approach when developing harvest strategies.