7 resultados para Greenly, William L., 1813-1883 Governors--Michigan

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

(PDF contains 3 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(PDF contains 3 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(PDF contains 2 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Taxonomic descriptions, line drawings, and references are given for the 30 named and 5 unnamed species of North American fish Eimeriidae. In addition, a key was developed based on available morphologic data to distinguish between similar species. Taxa are divided into two genera: Eimeria (27 species) which are tetr&sporocystic with dizoic, nonbivalved sporocysts, and Goussia (3 species) which are tetrasporocystic with dizoic, bivalved sporocysts that lack Stleda bodies and have sporocyst walls composed of two longitudinal valves. (PDF file contains 24 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silver King Creek, Alpine County, is the native range of the Federally-threatened Paiute cutthroat trout, Oncorhynchus clarki seleniris. Paiute cutthroat currently inhabit Coyote Valley and Corral Valley creeks, which are tributaries to Silver King Creek below Llewellyn Falls, and also Silver King Creek and tributaries aboye Llewellyn Falls. Rainbow trout, O. mykiss, were introduced into the basin during 1949 and became hybridized with Paiute cutthroat. Chemical treatments attempted by the California Department of Fish and Game (CDFG) in 1964 and 1976 failed to eliminate hybrid trout. A chemical treatment project was again conducted by the CDFG from 1991 through 1993 to eliminate hybrid trout from within the range of Paiute cutthroat. This report presents a summary of events for the first two years of the Silver King Paiute Cutthroat Trout Restoration Project; a more thorough analysis is made of the third and final year of the project. (PDF contains 39 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the sexual differentiation and reproductive dynamics of striped mullet (Mugil cephalus L.) in the estuaries of South Carolina. A total of 16,464 specimens were captured during the study and histological examination of sex and maturity was performed on a subsample of 3670 fish. Striped mullet were sexually undifferentiated for the first 12 months, began differentiation at 13 months, and were 90% fully differentiated by 15 to 19 months of age and 225 mm total length (TL). The defining morphological characteristics for differentiating males was the elongation of the protogonial germ tissue in a corradiating pattern towards the center of the lobe, the development of primary and secondary ducts, and the lack of any recognizable ovarian wall structure. The defining female characteristics were the formation of protogonial germ tissue into spherical germ cell nests, separation of a tissue layer from the outer epithelial layer of the lobe-forming ovarian walls, a tissue bud growing from the suspensory tissue that helped form the ovary wall, and the proliferation of oogonia and oocytes. Sexual maturation in male striped mullet first occurred at 1 year and 248 mm TL and 100% maturity occurred at age 2 and 300 mm TL. Female striped mullet first matured at 2 years and 291 mm total length and 100% maturity occurred at 400 mm TL and age 4. Because of the open ocean spawning behavior of striped mullet, all stages of maturity were observed in males and females except for functionally mature females with hydrated oocytes. The spawning season for striped mullet recruiting to South Carolina estuaries lasts from October to April; the majority of spawning activity, however, occurs from November to January. Ovarian atresia was observed to have four distinct phases. This study presents morpholog ical analysis of reproductive ontogeny in relation to size and age in South Carolina striped mullet. Because of the length of the undifferentiated gonad stage in juvenile striped mullet, previous studies have proposed the possibility of protandric hermaphrodism in this species. The results of our study indicate that striped mullet are gonochoristic but capable of exhibiting nonfunctional hermaphroditic characteristics in differentiated mature gonads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fecundity in striped mullet (Mugil cephalus) from South Carolina correlated highly with length and weight, but not with age. Oocyte counts ranged from 4.47 × 105 to 2.52 × 106 in 1998 for fish ranging in size from 331 mm to 600 mm total length, 2.13 × 105to 3.89 × 106in 1999 for fish ranging in size from 332 mm to 588 mm total length, and 3.89 × 105 to 3.01 × 106 in 2000 for fish ranging in size from 325 mm to 592 mm total length. The striped mullet in this study had a high degree of variability in the size-at-age relation-ship; this variability was indicative of varied growth rates and compounded the errors in estimating fecundity at age. The stronger relationship of fecundity to fish size allowed a much better predictive model for potential fecundity in striped mullet. By comparing fecundity with other measures of reproductive activity, such as the gonadosomatic index, histological examination, and the measurement of mean oocyte diameters, we determined that none of these methods by themselves were adequate to determine the extent of reproductive development. Histological examinations and oocyte diameter measurements revealed that fecundity counts could be made once developing oocytes reached 0.400 μm or larger. Striped mullet are isochronal spawners; therefore fecundity estimates for this species are easier to determine because oocytes develop at approximately the same rate upon reaching 400 μm. This uniform development made oocytes that were to be spawned easier to count. When fecundity counts were used in conjunction with histological examination, oocyte diameter measurements, and gonadosomatic index, a more complete measure of reproductive potential and the timing of the spawning season was possible. In addition, it was determined that striped mullet that recruit into South Carolina estuaries spawn from October through April.