3 resultados para Gravity waves
em Aquatic Commons
Resumo:
Many types of oceanic physical phenomena have a wide range in both space and time. In general, simplified models, such as shallow water model, are used to describe these oceanic motions. The shallow water equations are widely applied in various oceanic and atmospheric extents. By using the two-layer shallow water equations, the stratification effects can be considered too. In this research, the sixth-order combined compact method is investigated and numerically implemented as a high-order method to solve the two-layer shallow water equations. The second-order centered, fourth-order compact and sixth-order super compact finite difference methods are also used to spatial differencing of the equations. The first part of the present work is devoted to accuracy assessment of the sixth-order super compact finite difference method (SCFDM) and the sixth-order combined compact finite difference method (CCFDM) for spatial differencing of the linearized two-layer shallow water equations on the Arakawa's A-E and Randall's Z numerical grids. Two general discrete dispersion relations on different numerical grids, for inertia-gravity and Rossby waves, are derived. These general relations can be used for evaluation of the performance of any desired numerical scheme. For both inertia-gravity and Rossby waves, minimum error generally occurs on Z grid using either the sixth-order SCFDM or CCFDM methods. For the Randall's Z grid, the sixth-order CCFDM exhibits a substantial improvement , for the frequency of the barotropic and baroclinic modes of the linear inertia-gravity waves of the two layer shallow water model, over the sixth-order SCFDM. For the Rossby waves, the sixth-order SCFDM shows improvement, for the barotropic and baroclinic modes, over the sixth-order CCFDM method except on Arakawa's C grid. In the second part of the present work, the sixth-order CCFDM method is used to solve the one-layer and two-layer shallow water equations in their nonlinear form. In one-layer model with periodic boundaries, the performance of the methods for mass conservation is compared. The results show high accuracy of the sixth-order CCFDM method to simulate a complex flow field. Furthermore, to evaluate the performance of the method in a non-periodic domain the sixth-order CCFDM is applied to spatial differencing of vorticity-divergence-mass representation of one-layer shallow water equations to solve a wind-driven current problem with no-slip boundary conditions. The results show good agreement with published works. Finally, the performance of different schemes for spatial differencing of two-layer shallow water equations on Z grid with periodic boundaries is investigated. Results illustrate the high accuracy of combined compact method.
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop on "Wave Sensor Technologies" in St. Petersburg, Florida on March 7-9, 2007, hosted by the University of South Florida (USF) College of Marine Science, an ACT partner institution. The primary objectives of this workshop were to: 1) define the present state of wave measurement technologies, 2) identify the major impediments to their advancement, and 3) make strategic recommendations for future development and on the necessary steps to integrate wave measurement sensors into operational coastal ocean observing systems. The participants were from various sectors, including research scientists, technology developers and industry providers, and technology users, such as operational coastal managers and coastal decision makers. Waves consistently are ranked as a critical variable for numerous coastal issues, from maritime transportation to beach erosion to habitat restoration. For the purposes of this workshop, the participants focused on measuring "wind waves" (i.e., waves on the water surface, generated by the wind, restored by gravity and existing between approximately 3 and 30-second periods), although it was recognized that a wide range of both forced and free waves exist on and in the oceans. Also, whereas the workshop put emphasis on the nearshore coastal component of wave measurements, the participants also stressed the importance of open ocean surface waves measurement. Wave sensor technologies that are presently available for both environments include bottom-mounted pressure gauges, surface following buoys, wave staffs, acoustic Doppler current profilers, and shore-based remote sensing radar instruments. One of the recurring themes of workshop discussions was the dichotomous nature of wave data users. The two separate groups, open ocean wave data users and the nearshore/coastal wave data users, have different requirements. Generally, the user requirements increase both in spatial/temporal resolution and precision as one moves closer to shore. Most ocean going mariners are adequately satisfied with measurements of wave period and height and a wave general direction. However, most coastal and nearshore users require at least the first five Fourier parameters ("First 5"): wave energy and the first four directional Fourier coefficients. Furthermore, wave research scientists would like sensors capable of providing measurements beyond the first four Fourier coefficients. It was debated whether or not high precision wave observations in one location can take the place of a less precise measurement at a different location. This could be accomplished by advancing wave models and using wave models to extend data to nearby areas. However, the consensus was that models are no substitution for in situ wave data.[PDF contains 26 pages]
Resumo:
Influence of moisture and specific gravity on the strength of mango wood is discussed. The co-efficient of correlation between specific gravity and breaking strength was found to be non-significant. The relation of strength and moisture was found to be highly significant. The mean strength values indicated a reduction in strength when the moisture increased from 8.5 to 18.8%. However no appreciable difference in strength values could be observed when moisture increased above 37%. The strength-moisture relationship is a straight line, passing approximately through the fibre saturation point. By using the exponential formula, the breaking strength corresponding to any moisture level between zero and fibre saturation can be determined.