49 resultados para Gorgas Memorial Laboratory.

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In mid 1903, during the annual meeting of the American Fisheries Society, AFS members, U.S. Fish Commission (USFC) staff, and other interested persons gathered at Woods Hole, Mass., to dedicate a permanent memorial to Spencer F. Baird, founder of the U.S. Fish Commission. President of the AFS that year was the USFC Commissioner George M. Bowers. Speakers were Chicago attorney E. W. Blatchford; W. K. Brooks, a professor at Johns Hopkins University, Baltimore, Md., who had conducted research at the Commission's Beaufort Laboratory; and, very briefly, the noted fish culturists Frank N. Clark of Michigan and Livingston Stone of Vermont. The following record of the dedication ceremony appeared as a twopart article in The Fishing Gazette, 22 and 29 August 1903.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of mefluidide (N-(2,4-dimethyl-5[[trifluromethyl) sulfonyl] amino] phenol) acetamide) to act as a submersed aquatic plant growth regulator was evaluated using a laboratory bioassay system. Main stem elongation of hydrilla (Hydrilla verticillata (L.f.) Royle) and Eurasian watermilfoil (Myriophyllum spicatum L.) was effectively reduced by mefluidide at low concentrations. The lowest effective concentration of mefluidide that reduced stem length in Eurasian watermilfoil (100 yg a.i./L) was 5 times lower than that for hydrilla (500 yg a.i./L). Short-term net photosynthetic rates of these plants were not affected by mefluidide at concentrations as high as 1000 yg a.i./L. The minimum exposure time required to maintain an inhibitory effect for at least 28 days at a concentration of 500 yg ai.i./L was 3 to 7 days for Eurasian watermilfoil and 7 to 14 days for hydrilla. The results suggest that mefluidide is a more effective growth regulator for Eurasian watermilfoil than hydrilla. Exogenously applied gibberellic acid (GA) did not completely overcome the inhibitory effect of mefluidide even when GA was added at a high concentration (10-5 M). In addition, the internodal lengths of stems treated with mefluidide were not reduced as they were when treated with gibberellin synthesis inhibitors. The reduction of main stem elongation by mefluidide appeared to be due to the inhibition of new cell and tissue development at the stem tip rather than from inhibition of GA biosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 17th Annual Sea Turtle Symposium was held at the Delta Orlando Resort in Orlando, Florida U.S.A. from March 4-8, 1997. The symposium was hosted by Florida Atlantic University, Mote Marine Laboratory, University of Central Florida, University of Florida, Florida Atlantic University and the Comité Nacional para la Conservación y Protección de las Totugas Marinas. The 17th was the largest symposium to date. A total of 720 participants registered, including sea turtle biologists, students, regulatory personnel, managers, and volunteers representing 38 countries. In addition to the United States, participants represented Australia, Austria, the Bahamas, Bonaire, Bermuda, Brazil, Canada, Colombia, Costa Rica, Croatia, Cuba, Cyprus, Dominican Republic, Ecuador, England, Guatemala, Greece, Honduras, India, Italy, Japan, Madagascar, Malaysia, Mexico, The Netherlands, Nicaragua, Peru, Philippines, Republic of Seychelles, Scotland, Spain, Sri Lanka, Switzerland, Taiwan, Turkey, Uruguay, and Venezuela. In addition to the 79 oral, 2 video, and 120 poster presentations, 3 workshops were offered: Selina Heppell (Duke University Marine Laboratory) provided “Population Modeling,” Mike Walsh and Sam Dover (Sea World-Orlando) conducted “Marine Turtle Veterinary Medicine” and “Conservation on Nesting Beaches” was offered by Blair Witherington and David Arnold (Florida Department of Environmental Protection). On the first evening, P.C.H. Pritchard delivered a thoughtful retrospect on Archie Carr that showed many sides of a complex man who studied and wrote about sea turtles. It was a presentation that none of us will forget. The members considered a number of resolutions at the Thursday business meeting and passed six. Five of these resolutions are presented in the Commentaries and Reviews section of Chelonian Conservation and Biology 2(3):442-444 (1997). The symposium was fortunate to have many fine presentations competing for the Archie Carr Best Student Presentations awards. The best oral presentation award went to Amanda Southwood (University of British Columbia) for “Heart rates and dive behavior of the leatherback sea turtle during the internesting interval.” The two runners-up were Richard Reina (Australian National University) for “Regulation of salt gland activity in Chelonia mydas” and Singo Minamikawa (Kyoto University) for “The influence that artificial specific gravity change gives to diving behavior of loggerhead turtles”. The winner of this year’s best poster competition was Mark Roberts (University of South Florida) for his poster entitled “Global population structure of green sea Turtles (Chelonia mydas) using microsatellite analysis of male mediated gene flow.” The two runners-up were Larisa Avens (University of North Carolina-Chapel Hill) for “Equilibrium responses to rotational displacements by hatchling sea turtles: maintaining a migratory heading in a turbulent ocean” and Annette Broderick (University of Glasgow) for “Female size, not length, is a correlate of reproductive output.” The symposium was very fortunate to receive a matching monetary and subscription gift from Anders J. G. Rhodin of the Chelonian Research Foundation. These enabled us to more adequately reward the fine work of students. The winners of the best paper and best poster awards received $400 plus a subscription to Chelonian Conservation and Biology. Each runner up received $100. The symposium owes a great debt to countless volunteers who helped make the meeting a success. Those volunteers include: Jamie Serino, Alan Bolton, and Karen Bjorndal, along with the UF students provided audio visual help, John Keinath chaired the student awards committee, Mike Salmon chaired the Program Commiteee, Sheryan Epperly and Joanne Braun compiled the Proceedings, Edwin Drane served as treasurer and provided much logistical help, Jane Provancha coordinated volunteers, Thelma Richardson conducted registration, Vicki Wiese coordinated food and beverage services, Jamie Serino and Erik Marin coordinated entertainment, Kenneth Dodd oversaw student travel awards, Traci Guynup, Tina Brown, Jerris Foote, Dan Hamilton, Richie Moretti, and Vicki Wiese served on the time and place committee, Blair Witherington created the trivia quiz, Tom McFarland donated the symposium logo, Deborah Crouse chaired the resolutions committee, Pamela Plotkin chaired the nominations committee, Sally Krebs, Susan Schenk, and Larry Wood conducted the silent auction, and Beverly and Tom McFarland coordinated all 26 vendors. Many individuals from outside the United States were able to attend the 17th Annual Sea Turtle Symposium thanks to the tireless work of Karen Eckert, Marydele Donnelly, and Jack Frazier in soliciting travel assistance for a number of international participants. We are indebted to those donating money to the internationals’ housing fund (Flo Vetter Memorial Fund, Marinelife Center of Juno Beach, Roger Mellgren, and Jane Provancha). We raise much of our money for international travel from the auction; thanks go to auctioneer Bob Shoop, who kept our auction fastpaced and entertaining, and made sure the bidding was high. The Annual Sea Turtle Symposium is unequaled in its emphasis on international participation. Through international participation we all learn a great deal more about the biology of sea turtles and the conservation issues that sea turtles face in distant waters. Additionally, those attending the symposium come away with a tremendous wealth of knowledge, professional contacts, and new friendships. The Annual Sea Turtle Symposium is a meeting in which pretenses are dropped, good science is presented, and friendly, open communication is the rule. The camaraderie that typifies these meetings ultimately translates into understanding and cooperation. These aspects, combined, have gone and will go a long way toward helping to protect marine turtles and toward aiding their recovery on a global scale. (PDF contains 342 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Scientific Forum on the Gulf of Mexico: The Islands in the Stream Concept took place in January 2008 in Sarasota, Florida. The purpose of the meeting was to bring together scientists and managers from around the Gulf of Mexico to discuss a range of topics on our knowledge of the Gulf of Mexico, from its geology to larger-scale connectivity to the Caribbean region, and their applications to the concept of a more integrated approach to area-based management. The forum included six panels of invited experts who spoke on the oceanographic and biological features in the Gulf of Mexico, including connections with Mexico and the Mesoamerican barrier reef system, and the legal and regulatory structure currently in place. The charge to the group was to share information, identify gaps in our knowledge, identify additional potential areas for protection, and discuss available science about connectivity and the potential value of establishing a marine protected area network in the Gulf of Mexico. (PDF has 108 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A basic analysis of sources, dates, authors for an Environmental Science Laboratory based at waters edge. (22 powerpoint slides)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Larval kelp (Sebastes atrovirens), brown (S. auriculatus), and blackand-yellow (S. chrysomelas) rockfish were reared from known adults, to preflexion stage, nine days after birth for S. chrysomelas, to late postflexion stage for S. atrovirens, and to pelagic juvenile stage for S. auriculatus. Larval S. atrovirens and S. chrysomelas were about 4.6 mm body length (BL) and S. auriculatus about 5.2 mm BL at birth. Both S. atrovirens and S. auriculatus underwent notochord flexion at about 6–9 mm BL. Sebastes atrovirens transform to the pelagic juvenile stage at about 14–16 mm BL and S. auriculatus transformed at ca. 25 mm BL. Early larvae of all three species were characterized by melanistic pigment dorsally on the head, on the gut, on most of the ventral margin of the tail, and in a long series on the dorsal margin of the tail. Larval S. atrovirens and S. auriculatus developed a posterior bar on the tail during the flexion or postflexion stage. In S. atrovirens xanthic pigment resembled the melanistic pattern throughout larval development. Larval S. auriculatus lacked xanthophores except on the head until late preflexion stage, when a pattern much like the melanophore pattern gradually developed. Larval S. chrysomelas had extensive xanthic pigmentation dorsally, but none ventrally, in preflexion stage. All members of the Sebastes subgenus Pteropodus (S. atrovirens, S. auriculatus, S. carnatus, S. caurinus, S. chrysomelas, S. dalli, S. maliger, S. nebulosus, S. rastrelliger) are morphologically similar and all share the basic melanistic pigment pattern described here. Although the three species reared in this study can be distinguished on the basis of xanthic pigmentation, it seems unlikely that it will be possible to reliably identify field-collected larvae to species using traditional morphological and melanistic pigmentation characters. (PDF file contains 36 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This laboratory guide presents taxonomic information on eggs and larvae of fishes of the Northeast Pacific Ocean (north of California) and the eastern Bering Sea. Included are early-life-history series, illustrations, and comparative descriptions of 232 species expected to spawn here, out of a total 627 species known to occur in marine waters of this area. Meristic and general life-history data are included, as well as diagnostic characters to help identify eggs and larvae. Most of this information has been gleaned from literature, with the addition of 200 previously unpublished illustrations. (PDF file contains 654 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The embryonic development in Clarias gariepinus was studied under laboratory conditions. The developmental stages of eggs starting from first cleavage were examined microscopically. Photomicroscope was used to take important stages of segmentation, blastulation, differentiation of embryo and hatching. The films of the photograph were developed and printed for each stage produced. The accurate timing and detailed description of each stage was done. The results show that the blastodisc (Polar cap) appeared about 35 minutes after fertilization and the first cleavage dividing the blastodisc into two blastomeres occurs 15 minutes after polar cap formation. Details of the developmental stages of embryos and the timing from one stage to the other were described. The larva shook off the shell and emerged completely from the egg case about 22 hours after fertilization at a water temperature of 25.1 degree C. The accurate determination of the time of initiation of first mitosis is of great importance in fish culture and breeding especially in the production of tetraploids

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rhythm of division of 9 species belonging to different groups of algae were analysed in situ and in the laboratory. The research which developed in different environmental conditions attempted to establish the capacity for multiplication and assimilation of chlorophyll on the part of the algae under study with a view to placing them in a culture. The results obtained showed that the green multicellular algae (eg. Ulothrix) and the blue algae (eg. Lyngbya, Oscillatoria) are able to produce an appreciable quantity of dry matter, just as the unicellular algae. At the same time it arises that amongst the numerous factors of the environment, temperature plays one of the most important roles in the process of multiplication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

English: For nearly a century, fisheries scientists have studied marine fish stocks in an effort to understand how the abundances of fish populations are determined. During the early lives of marine fishes, survival is variable, and the numbers of individuals surviving to transitional stages or recruitment are difficult to predict. The egg, larval, and juvenile stages of marine fishes are characterized by high rates of mortality and growth. Most marine fishes, particularly pelagic species, are highly fecund, produce small eggs and larvae, and feed and grow in complex aquatic ecosystems. The identification of environmental or biological factors that are most important in controlling survival during the early life stages of marine fishes is a potentially powerful tool in stock assessment. Because vital rates (mortality and growth) during the early life stages of marine fishes are high and variable, small changes in those rates can have profound effects on the properties of survivors and recruitment potential (Houde 1989). Understanding and predicting the factors that most strongly influence pre-recruit survival are key goals of fisheries research programs. Spanish: Desde hace casi un siglo, los científicos pesqueros han estudiado las poblaciones de peces marinos en un intento por entender cómo se determina la abundancia de las mismas. Durante la vida temprana de los peces marinos, la supervivencia es variable, y el número de individuos que sobrevive hasta las etapas transicionales o el reclutamiento es difícil de predecir. Las etapas de huevo, larval, y juvenil de los peces marinos son caracterizadas por tasas altas de mortalidad y crecimiento. La mayoría de los peces marinos, particularmente las especies pelágicas, son muy fecundos, producen huevos y larvas pequeños, y se alimentan y crecen en ecosistemas acuáticos complejos. La identificación los factores ambientales o biológicos más importantes en el control de la supervivencia durante las etapas tempranas de vida de los peces marinos es una herramienta potencialmente potente en la evaluación de las poblaciones. Ya que las tasas vitales (mortalidad y crecimiento) durante las etapas tempranas de vida de los peces marinos son altas y variables, cambios pequeños en esas tasas pueden ejercer efectos importantes sobre las propiedades de los supervivientes y el potencial de reclutamiento (Houde 1989). Comprender y predecir los factores que más afectan la supervivencia antes del reclutamiento son objetivos clave de los programas de investigación pesquera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

English: Food selection of first-feeding yellowfin tuna larvae was studied in the laboratory during October 1992. The larvae were hatched from eggs obtained by natural spawning of yellowfin adults held in sea pens adjacent to Ishigaki Island, Okinawa Prefecture, Japan. The larvae were fed mixed-prey assemblages consisting of size-graded wild zooplankton and cultured rotifers. Yellowfin larvae were found to be selective feeders during the first four days of feeding. Copepod nauplii dominated the diet numerically, by frequency of occurrence and by weight. The relative importance of juvenile and adult copepods (mostly cyclopoids) in the diet increased over the 4-day period. Rotifers, although they comprised 31 to 40 percent of the available forage, comprised less than 2.1 percent of the diet numerically. Prey selection indices were calculated taking into account the relative abundances of prey, the swimming speeds of yellowfin larvae and their prey, and the microscale influence of turbulence on encounter rates. Yellowfin selected for copepod nauplii and against rotifers, and consumed juvenile and adult copepods in proportion to their abundances. Yellowfin larvae may select copepod nauplii and cyclopoid juveniles and adults based on the size and discontinuous swimming motion of these prey. Rotifers may not have been selected because they were larger or because they exhibit a smooth swimming pattern. The best initial diet for the culture of yellowfin larvae may be copepod nauplii and cyclopoid juveniles and adults, due to the size, swimming motion, and nutritional content of these prey. If rotifers alone are fed to yellowfin larvae, the rotifers should be enriched with a nutritional supplement that is high in unsaturated fatty acids. Mouth size of yellowfin larvae increases rapidly within the first few days of feeding, which minimizes limitations on feeding due to prey size. Although yellowfin larvae initiate feeding on relatively small prey, they rapidly acquire the ability to add relatively large, rare prey items to the diet. This mode of feeding may be adaptive for the development of yellowfin larvae, which have high metabolic rates and live in warm mixed-layer habitats of the tropical and subtropical Pacific. Our analysis also indicates a strong potential for the influence of microscale turbulence on the feeding success of yellowfin larvae. --- Experiments designed to validate the periodicity of otolith increments and to examine growth rates of yellowfin tuna larvae were conducted at the Japan Sea-Farming Association’s (JASFA) Yaeyama Experimental Station, Ishigaki Island, Japan, in September 1992. Larvae were reared from eggs spawned by captive yellowfin enclosed in a sea pen in the bay adjacent to Yaeyama Station. Results indicate that the first increment is deposited within 12 hours of hatching in the otoliths of yellowfin larvae, and subsequent growth increments are formed dailyollowing the first 24 hours after hatching r larvae up to 16 days of age. Somatic and otolith gwth ras were examined and compared for yolksac a first-feeding larvae reared at constant water tempatures of 26�and 29°C. Despite the more rapid develo of larvae reared at 29°C, growth rates were nnificaifferent between the two treatments. Howeve to poor survival after the first four days, it was ssible to examine growth rates beyond the onset of first feeding, when growth differences may become more apparent. Somatic and otolith growth were also examined for larvae reared at ambient bay water temperatures during the first 24 days after hatching. timates of laboratory growth rates were come to previously reported values for laboratory-reared yelllarvae of a similar age range, but were lower than growth rates reported for field-collected larvae. The discrepancy between laboratory and field growth rates may be associated with suboptimal growth conditions in the laboratory. Spanish: Durante octubre de 1992 se estudió en el laboratorio la seleccalimento por larvaún aleta amarillmera alimentación. Las larvas provinieron de huevos obtenidosel desove natural de aletas amarillas adultos mantenidos en corrales marinos adyacentes a la Isla Ishigaki, Prefectura de Okinawa (Japón). Se alimentó a las larvas con presas mixtas de zooplancton silvestre clasificado por tamaño y rotíferos cultivados. Se descubrió que las larvas de aleta amarilla se alimentan de forma selectiva durante los cuatro primeros días de alimentación. Los nauplios de copépodo predominaron en la dieta en número, por frecuencia de ocurrencia y por peso. La importancia relativa de copépodos juveniles y adultos (principalmente ciclopoides) en la dieta aumentó en el transcurso del período de 4 días. Los rotíferos, pese a que formaban del 31 al 40% del alimento disponible, respondieron de menos del 2,1% de la dieta en número. Se calcularon índices de selección de presas tomando en cuenta la abundancia relativa de las presas, la velocidad de natación de las larvas de aleta amarilla y de sus presas, y la influencia a microescala de la turbulencia sobre las tasas de encuentro. Los aletas amarillas seleccionaron a favor de nauplios de copépodo y en contra de los rotíferos, y consumieron copépodos juveniles y adultos en proporción a su abundancia. Es posible que las larvas de aleta amarilla seleccionen nauplios de copépodo y ciclopoides juveniles y adultos con base en el tamaño y movimiento de natación discontinuo de estas presas. Es posible que no se hayan seleccionado los rotíferos a raíz de su mayor tamaño o su patrón continuo de natación. Es posible que la mejor dieta inicial para el cultivo de larvas de aleta amarilla sea nauplios de copépodo y ciclopoides juveniles y adultos, debido al tamaño, movimiento de natación, y contenido nutritivo de estas presas. Si se alimenta a las larvas de aleta amarilla con rotíferos solamente, se debería enriquecerlos con un suplemento nutritivo rico en ácidos grasos no saturados. El tamaño de la boca de las larvas de aleta amarilla aumenta rápidamente en los primeros pocos días de alimentación, reduciendo la limitación de la alimentación debida al tamaño de la presa. Pese a que las larvas de aleta amarilla inician su alimentación con presas relativamente pequeñas, se hacen rápidamente capaces de añadir presas relativamente grandes y poco comunes a la dieta. Este modo de alimentación podría ser adaptivo para el desarrollo de larvas de aleta amarilla, que tienen tasa metabólicas altas y viven en hábitats cálidos en la capa de mezcla en el Pacífico tropical y subtropical. Nuestro análisis indica también que la influencia de turbulencia a microescala es potencialmente importante para el éxito de la alimentación de las larvas de aleta amarilla. --- En septiembre de 1992 se realizaron en la Estación Experimental Yaeyama de la Japan Sea- Farming Association (JASFA) en la Isla Ishigaki (Japón) experimentos diseñados para validar la periodicidad de los incrementos en los otolitos y para examinar las tasas de crecimiento de las larvas de atún aleta amarilla. Se criaron las larvas de huevos puestos por aletas amarillas cautivos en un corral marino en la bahía adyacente a la Estación Yaeyama. Los resultados indican que el primer incremento es depositado menos de 12 horas después de la eclosión en los otolitos de las larvas de aleta amarilla, y que los incrementos de crecimiento subsiguientes son formados a diario a partir de las primeras 24 horas después de la eclosión en larvas de hasta 16 días de edad. Se examinaron y compararon las tasas de crecimiento somático y de los otolitos en larvas en las etapas de saco vitelino y de primera alimentación criadas en aguas de temperatura constante entre 26°C y 29°C. A pesar del desarrollo más rápido de las larvas criadas a 29°C, las tasas de crecimiento no fueron significativamente diferentes entre los dos tratamientos. Debido a la mala supervivencia a partir de los cuatro primeros días, no fue posibación, uando las diferencias en el crecimiento podrían hacerse más aparentes. Se examinó también el crecimiento somático y de los otolitos para larvas criadas en temperaturas de agua ambiental en la bahía durante los 24 días inmediatamente después de la eclosión. Nuestras estimaciones de las tasas de crecimiento en el laboratorio fueron comparables a valores reportados previamente para larvas de aleta amarilla de edades similares criadas en el laboratorio, pero más bajas que las tasas de crecimiento reportadas para larvas capturadas en el mar. La discrepancia entre las tasas de crecimiento en el laboratorio y el mar podría estar asociada con condiciones subóptimas de crecimiento en el lab

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report provides a guide into Category 2 parasites affecting freshwater fish and salmonids. First a brief summary is given of distinctions between parasites of Category 1 and 2. The Guide then provides a list of category 2 parasites, highlighting damage they can cause, species of fish affected, if it can be treated, how widespread the parasite is and how it is transferred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated age, growth, and ontogenetic effects on the proportionality of otolith size to fish size in laboratory-reared delta smelt (Hypomesus transpacificus) from the San Francisco Bay estuary. Delta smelt larvae were reared from hatching in laboratory mesocosms for 100 days. Otolith increments from known-age fish were enumerated to validate that growth increments were deposited daily and to validate the age of fish at first ring formation. Delta smelt were found to lay down daily ring increments; however, the first increment did not form until six days after hatching. The relationship between otolith size and fish size was not biased by age or growth-rate effects but did exhibit an interruption in linear growth owing to an ontogenetic shift at the postflexon stage. To back-calculate the size-at-age of individual fish, we modified the biological intercept (BI) model to account for ontogenetic changes in the otolith-size−fish-size relationship and compared the results to the time-varying growth model, as well as the modified Fry model. We found the modified BI model estimated more accurately the size-at-age from hatching to 100 days after hatching. Before back-calculating size-at-age with existing models, we recommend a critical evaluation of the effects that age, growth, and ontogeny can have on the otolith-size−fish-size relations