58 resultados para Goodwin, Thomas, 1586 or 7-1642
em Aquatic Commons
Resumo:
The ontogeny of haematopoiesis in the perciform fish, spot Leiostomus xanthurus, differed from that reported as the norm for fishes, as exemplified by the cypriniform zebrafish Danio rerio, and observed in the batrachoidiform oyster toadfish Opsanus tau. Erythropoiesis in spot was first evident in the head kidney of yolk-sac larvae 3 days after hatching (DAH). No embryonic intermediate cell mass (ICM) of primitive stem cells or blood islands on the yolk were apparent within embryos. Erythrocytes were first evident in circulation near the completion of yolk absorption, c. 5 DAH, when larvae were c. 20 mm notochord length (LN). Erythrocyte abundance increased rapidly with larval development for c. 14 to 16 DAH, then became highly variable following changes in cardiac chamber morphology and volume. Erythrocytic haemoglobin (Hb) was not detected within whole larvae until they were 12 DAH or c. 31 mm LN, well after yolk and oil-globule absorption. The Hb was not quantified until larvae were >47 DAH or >7 mm standard length. The delayed appearance of erythrocytes and Hb in spot was similar to that reported for other marine fishes with small embryos and larvae. In oyster toadfish, a marine teleost that exhibits large embryos and larvae, the ICM and Hb were first evident in two bilateral slips of erythropoietic tissue in the embryos, c. 5 days after fertilization. Soon thereafter, erythrocytes were evident in the heart, and peripheral and vitelline circulation. Initial haematopoiesis in oyster toadfish conformed with that described for zebrafish. While the genes that code for the development of haematopoiesis are conserved among vertebrates, gene expression lacks phylogenetic pattern among fishes and appears to conform more closely with phenotypic expression related to physiological and ecological influences of overall body size and environmental oxygen availability.
Resumo:
Management of coastal species of small cetaceans is often impeded by a lack of robust estimates of their abundance. In the Austral summers of 1997−98, 1998−99, and 1999−2000 we conducted line-transect surveys of Hector’s dolphin (Cephalorhynchus hectori) abundance off the north, east, and south coasts of the South Island of New Zealand. Survey methods were modified for the use of a 15-m sailing catamaran, which was equipped with a collapsible sighting platform giving observers an eye-height of 6 m. Eighty-six percent of 2061 km of survey effort was allocated to inshore waters (4 nautical miles [nmi] or 7.4 km from shore), and the remainder to offshore waters (4−10 nmi or 7.4–18.5 km from shore). Transects were placed at 45° to the shore and spaced apart by 1, 2, 4, or 8 nmi according to pre-existing data on dolphin density. Survey effort within strata was uniform. Detection functions for sheltered waters and open coasts were fitted separately for each survey. The effect of attraction of dolphins to the survey vessel and the fraction of dolphins missed on the trackline were assessed with simultaneous boat and helicopter surveys in January 1999. Hector’s dolphin abundance in the coastal zone to 4 nmi offshore was calculated at 1880 individuals (CV=15.7%, log-normal 95% CI=1384−2554). These surveys are the first line-transect surveys for cetaceans in New Zealand’s coastal waters.
Resumo:
To investigate the effect of protein restriction with subsequent re-alimentation on nutrient utilization, hematological and biochemical changes of Indian major carp, Rohu (Labeo rohita H.), 150 acclimatized Rohu fingerlings (average 20.74 ± 0.13 g) divided into five experimental groups (30 fingerlings in each groups with three replications with 10 fingerlings in each) for experimental trial of 90 days using completely randomized design. Control group (T sub(CPR)) was fed with feed having 30% crude protein at 3% of body weight for 90 days trial period. Other experimental groups T sub(1PR) was alternatively 3 days fed with feed having 20% CP and 30% CP at 3% of body weight, T sub(2PR) was alternatively 7 days fed with feed having 20% CP and 30% CP at 3% of body weight, T sub(3PR) was alternatively 15 days fed with feed having 20% CP and 30% CP at 3% of body weight and T sub(4PR) was alternatively 25 days fed with feed having 20% CP and 30% CP at 3% of body weight during 90 days trial period with daily ration in two equal halves at morning and afternoon. It was noticed that retention of different nutrients was almost similar among all treatment groups indicated improvement of digestibility of nutrients might not be the mechanisms for recovery growth in carps. Increased percent feed intake of body weight (hyperphagia) (4.14 ± 0.30 or 4.94 ± 0.46 and 3.33 ± 0.29), improved specific growth rate (1.86 ± 0.09 or 2.26 ± 0.05 and 1.43 ± 0.01), absolute growth rate (1.57 ± 0.08 or 1.84 ± 0.18 and 1.36 ± 0.12), protein efficiency ratio (1.19 ± 0.11 or1.16 ± 0.12 and 1.05 ± 0.09) were the important mechanism showing better performance index (21.60 ± 1.09 or 23.80 ± 0.21 and 19.45 ± 0.37) through which the experimental groups which were protein restricted and re-alimented at 3 or 7 days alternatively during 90 days trial period could able to compensate the growth retardation and to catch up the final body weight of control (128.68 ± 11.53 g/f) but other experimental groups failed to compensate during 90 days trial period. Result of the present study indicated that deprived fish i.e., fish received alternate 3 or 7 days protein restriction and re-alimentation showed recovery growth had still lower values of Hb (10.21 ± 0.02, and 9.88 ± 0.04 g/dl), hematocrit value (30.62 ± 0.05 and 26.64 ± 0.11%), total erythrocytic count (3.40 ± 0.01 and 3.29 ± 0.01 X10super(6) mm³), plasma glucose (126.93 ± 0.20 and 126.67 ± 0.05 mg/dl), total plasma lipid (1.04 ± 0.01 and 1.02 ± 0.01 g/dl) and liver glycogen (290.10 ± 0.80 and 288.99 ± 0.95 mg/kg) in comparison to control (10.56 ± 0.08 g/dl, 31.68 ± 0.24%, 3.52 ± 0.03 X10super(6) mm³, 128.23 ± 0.25 mg/dl, 1.07 ± 0.01g/dl and 292.00 ± 0.23 mg/kg) at the end of 90 days trial but total plasma protein in deprived group was compensated with advancement of trial period. All hematological and biochemical parameters studied were proportionately lowered in the experimental group got higher degree of deprivation. These findings suggested that with the increase of trial length complete compensation of hematological and biochemical profiles of rohu might be achieved. The results indicated that the implementation of alternative 7 days low and high protein diet feeding during aquaculture of carps could make economize the operation through minimizing the feed input cost.
Resumo:
The first aim of this research was to identify fatty acids, amino acids composition of Thunnus tonggol roe and their changes during cold storage (-18'C). The second aim was to determine the changes of moisture, protein, fat and ash contents of the roe during one year cold storage (-18'C). 60 samples of longtail tuna (Thunnus tonggol) ovaries were randomly collected form Bandar-e-Abbas landings. The samples were frozen at-30'C and kept in cold store at -18'C for one year. According to a time table, the samples were examined for identification of fatty acids, amino acids, moisture, protein, fat, ash, peroxide and T.V.N. and their changes were evaluated during this time. The results showed that 26 fatty acids were identified. The unsaturated fatty acids (UFA) and saturated fatty acids (SFA) were 62.33 and 37.6%, respectively, in fresh roe. So that, DHA (C22:6) and oleic acid (C18:1) had high amounts (24.79 and 21.88%) among the UFA and palmitic acid (C16:0) was the most content (22.75%) among the SFA. The PUFA/SFA was 0.91. Also, 17 amino acids were identified that essential amino acids (EAA) and nonessential amino acids (NE) were 10478 and 7562 mg/100g, respectively, and E/NE was 1.38. Among the EAA and NE, lysine (2110mg/100g) and aspartic acid (1924 mg/100g) were the most contents. Also, results showed that moisture, ash, protein and fat contents were 72.74, 1.8, 19.88 and 4.53%, respectively, in fresh roe. The effects of freezing and cold storage on the roes showed that UFA and SFA contents have reached to 49.83 and 48.07%, respectively, at the end of cold storage. It indicated that these compounds change to each other during frozen storage. Also, n-3 and n-6 series of fatty acids were 32.75 and 1.61% in fresh roe. But their contents decreased to 22.96 and 1.25% at the end of period. Among the fatty acids, 22:6 and C16:0 had the most changes. The changes of fatty acids were significantly at 95% level except for C15:1, C18:3(n-3) and C20:4(n-6). All of the amino acids decreased in frozen storage and their changes were significantly (P<0.05). EAA was 7818 mg/100g and E/NE was 1.27 at the end of storage period. Among the amino acids, leucine and lysine had the most changes. Moisture, ash, protein and fat contents were 70.13, 1.82, 19.4 and 6.51%, respectively, at the end of storage period. The peroxide value and T.V.N. increased during storage. So that, their contents have reached to 5.86 mg/kg and 26.37 mg/100 g, respectively, at the end of frozen storage. The best shelf life of Thunnus tonggol roe was 6 or 7 months, because of lipid oxidation and increasing of peroxide.
Resumo:
Improving PICES CO2 measurement quality The status of the Bering Sea: July - December 1998 The state of the eastern North Pacific since October 1998 The state of the western North Pacific in the second half of 1998 Paul Henry LeBlond Report on the ICES/SCOR Symposium on Ecosystem Effects of Fishing What is the carrying capacity of the North Pacific Ocean for salmonids? Southeast Bering Sea Carrying Capacity (SEBSCC) The Whole Earth System: The role of regional programs Sub-Arctic Gyre Experiment in the North Pacific Ocean (SAGE) The Alaska Predator Ecosystem Experiment (APEX): An integrated seabird and forage fish investigation sponsored by the Exxon Valdez Oil Spill Trustee Council ICES and GOOS: A progress report Report on GOOS Living Marine Resource Panel Meeting
Resumo:
Taking stock and looking to the future - note from former PICES Chairman The state of the western North Pacific in the first half of 1998 The status of the Bering Sea in the first eight month of 1998 The state of the eastern North Pacific since February 1998 Highlights of PICES VII, review of SB activities and future workplan The second PICES Workshop on the Okhotsk Sea and ajacent area PICES-GLOBEC Climate Change and Carrying Capacity Program: A report from PICES VII Data management for the CCCC Program Report on GOOS Living Marine Resource Panel Meeting Photos from PICES VII Vjatcheslav Petrovich Shuntov GLOBEC Canada: Who we are, what we’ve been doing and where we’re headed The Ocean Carrying Capacity Research Program (OCC) at the Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, Alaska JAMSTEC research activities in the northern North Pacific People and events
Resumo:
This is a report to the California Department of Parks and Recreation. It describes water quality and aquatic invertebrate monitoring after the construction of the Carmel River Lagoon Enhancement Project. Included are data that have been collected for two years and preliminary assessment of the enhanced ecosystem. This report marks the completion of 3-years of monitoring water quality and aquatic habitat. The report adopts the same format and certain background text from previous years’ reporting by the same research group (e.g. Larson et al., 2005). (Document contains 100 pages)
Resumo:
(PDF contains 55 pages)
Resumo:
This review focuses on modelling ocean circulation and its variability in the subarctic North Pacific; it addresses issues specific to that region, and not the subject of ocean modelling in general. The performance of existing models is assessed in relation to observations in the upper ocean, intermediate waters and deep/abyssal waters. (PDF contains 87 pages)
Resumo:
(Document pdf contains 54 pages)
Resumo:
(PDF contains 2 pages)
Resumo:
(PDF contains 3 pages.)
Resumo:
(PDF contains 6 pages.)
Resumo:
For the first time in its history, the International Symposium on Sea Turtle Biology and Conservation migrated to a site outside of the United States. Thus the Eighteenth edition was hosted by the Mazatlán Research Unit of the Instituto de Ciencias del Mar y Limnología of the Mexican National Autonomous University (UNAM) in Mazatlán, Sinaloa (Mexico) where it was held from 3-7, March, 1998. Above all, our symposium is prominent for its dynamism and enthusiasm in bringing together specialists from the world´s sea turtle populations. In an effort to extend this philosophy, and fully aware of how fast the interest in sea turtles has grown, the organizers paid special attention to bring together as many people as possible. With the tremendous efforts of the Travel Committee and coupled with a special interest by the Latin American region´s devotees, we managed to get 653 participants from 43 countries. The number of presentations increased significantly too, reaching a total of 265 papers, ranging from cutting-edge scientific reports based on highly sophisticated methods, to the experiences and successes of community-based and environmental education programs. A priority given by this symposium was the support and encouragement for the construction of "bridges" across cultural and discipline barriers. We found success in achieving a multinational dialogue among interest groups- scientists, resource managers, decision makers, ngo's, private industry. There was a broad representation of the broad interests that stretch across these sectors, yet everyone was able to listen and offer their own best contribution towards the central theme of the Symposium: the conservation of sea turtles and the diversity of marine and coastal environments in which they develop through their complicated and protracted life cycle. Our multidisciplinary approach is highly important at the present, finding ourselves at a cross roads of significant initiatives in the international arena of environmental law, where the conservation of sea turtles has a key role to play. Many, many people worked hard over the previous 12 months, to make the symposium a success. Our sincerest thanks to all of them: Program committee: Laura Sarti (chair), Ana Barragán, Rod Mast, Heather Kalb, Jim Spotilla, Richard Reina, Sheryan Epperly, Anna Bass, Steve Morreale, Milani Chaloupka, Robert Van Dam, Lew Ehrhart, J. Nichols, David Godfrey, Larry Herbst, René Márquez, Jack Musick, Peter Dutton, Patricia Huerta, Arturo Juárez, Debora Garcia, Carlos Suárez, German Ramírez, Raquel Briseño, Alberto Abreu; Registration and Secretary: Jane Provancha (chair), Lupita Polanco; Informatics: Germán Ramírez, Carlos Suárez; Cover art: Blas Nayar; Designs: Germán Ramírez, Raquel Briseño, Alberto Abreu. Auction: Rod Mast; Workshops and special meetings: Selina Heppell; Student prizes: Anders Rhodin; Resolutions committee: Juan Carlos Cantú; Local organizing committee: Raquel Briseño, Jane Abreu; Posters: Daniel Ríos and Jeffrey Semminoff; Travel committee: Karen Eckert (chair), Marydele Donnelly, Brendan Godley, Annette Broderick, Jack Frazier; Student travel: Francisco Silva and J. Nichols; Vendors: Tom McFarland and J. Nichols; Volunteer coordination: Richard Byles; Latin American Reunión: Angeles Cruz Morelos; Nominations committee: Randall Arauz, Colleen Coogan, Laura Sarti, Donna Shaver, Frank Paladino. Once again, Ed Drane worked his usual magic with the Treasury of the Symposium Significant financial contributions were generously provided by government agencies. SEMARNAP (Mexico´s Ministry of Environment, Natural Resources and Fisheries) through its central office, the Mazatlán Regional Fisheries Research Center (CRIP-Mazatlán) and the National Center for Education and Capacity Building for Sustainable Development (CECADESU) contributed to the logistics and covered the costs of auditoria and audiovisual equipment for the Symposium, teachers and their hotels for the Community Development and Environmental Education workshop in the 5th Latin American Sea Turtle Specialists; DIF (Dept of Family Affairs) provided free accomodation and food for the more than 100 participants in the Latin American Reunion. In this Reunion, the British Council-Mexico sponsored the workshop on the Project Cycle. The National Chamber of the Fisheries Industry (CANAINPES) kindly sponsored the Symposium´s coffee breaks. Personnel from the local Navy (Octave Zona Naval) provided invaluable aid in transport and logistics. The Scientific Coordination Office from UNAM (CICUNAM) and the Latin American Biology Network (RELAB) also provided funding. Our most sincere recognition to all of them. In the name of this Symposium´s compilers, I would like to also express our gratitude to Wayne Witzell, Technical Editor for his guidance and insights and to Jack Frazier for his help in translating and correcting the English of contributions from some non-native English speakers. Many thanks to Angel Fiscal and Tere Martin who helped with the typing in the last, last corrections and editions for these Proceedings. To all, from around the world, who generously helped make the 18th Symposium a huge success, shared their experiences and listened to ours, our deepest gratitude! (PDF contains 316 pages)