3 resultados para Glucose-6-phosphate dehydrogenase

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphorylase from muscle of tilapia (Tilapia mosambica) was extracted by water and purified by ammonium sulphate precipitation, centrifugation and repeated recrystallisation. Electro-phorogram of the enzyme preparation showed a single band near origin. The enzyme showed optimum pH and temperature at 6.1 and 37°C respectively. Glucose and glucose-6-phosphate were found to be competitive inhibitors of the enzyme. Maltose and starch acted as primers for the phosphorylase reaction like glycogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various phosphates and their mixtures were screened for their efficiency of preventing drip loss in frozen prawns. The effectiveness of the phosphates decreased in the following order: Sodium tripolyphosphate — Sodium pyrophosphate — Sodium hexametaphosphate Sodium metaphosphate — Sodium dihydrogen phosphate; the last two being ineffective. Even though thaw drip loss was reduced by the above treatments the organoleptic quality of the thawed as well as cooked products was unsatisfactory, discoloration being the major defect. A solution of a mixture of 12% sodium tripolyphosphate and 8.6% sodium dihydrogen phosphate or 2% citric acid in water when used as dip prevented thaw drip loss, improved cooked yield and organoleptic quality without adversely affecting the biochemical characteristics. Commercial scale trials showed that the results are highly reproducible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arylsulfatase activity and growth were estimated in Escherichia coli, isolated from marine sediment. Maximum activity was observed at pH 6.6 whereas the maximum growth was at pH 5.6. 2x10ˉ³ M is the optimum substrate concentration for the highest level of enzyme activity/synthesis as well as for its growth. In general higher substrate concentration tended to inhibit enzyme activity and also the growth of the bacterium. Maximum growth and highest enzyme activity occurred at 29°C and above this temperature decreased both of them. Besides these, glucose, sodium sulfate, sodium chloride, sodium dihydrogen phosphate, sodium acetate and ammonium chloride at higher concentrations were inhibiting the enzyme activity and growth. Above 0.2% of glucose, 3% of sodium chloride, 10x10ˉ³ M concentrations of sodium sulfate, sodium dihydrogen phosphate, sodium acetate and ammonium chloride inhibited the activity and growth also. These observations indicate that, to generalize a compound as inhibitor or activator it is difficult since this depends not only on its concentration but also on the source of the enzyme when more than one type is encountered in nature.