5 resultados para Global Knowledge Accumulation

em Aquatic Commons


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report is a compilation of five regional reviews that document the global status of tropical rivers and inland fisheries in three continents: Latin America, Africa and Asia. It explores the role of ‘valuation’ methods and their contribution to policy-making and river fishery management. From the compilation, the best estimate of the global value of inland fisheries for those three continents is US$ 5.58 billion (gross market value), which is equivalent to 19 percent of the current value of annual fish exports from developing countries (US$ 29 billion) for 2004. The compilation shows that there is a general shortage of information on inland fisheries, especially derived from conventional economic valuation methods, though information from economic impact assessment methods and socio-economic and livelihood analysis methods is more widely available. The status of knowledge about the impact of changes in river management on the value of tropical river fisheries is weak and patchy. Although the impacts of large dams on the hydrology, ecology and livelihood support attributes of tropical rivers are well-recognized, there have been only few valuation studies of these issues. The document highlights the need for further valuation studies of tropical river and inland fisheries in developing countries. It underlines how vital it is for policy-makers and other stakeholders to understand the importance of these natural resources in order to make appropriate decisions concerning their role in development policy and illustrates why capacity building in valuation should become a major priority for agencies concerned with fisheries management and policy-making.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This new project is multidisciplinary, with physical and chemical palaeolimnological aspects mainly the responsibility of Swiss and Russian scientists, and the biological limnology and palaeolimnology components mainly undertaken by the British and Russian groups. The overall project aim is to improve palaeoclimate reconstructions using sedimentary diatoms by promoting better understanding of diatom ecology and sediment-forming processes. The initial work plan is divided into four main parts: To understand diatom phytoplankton ecology more fully, to assess taphonomic changes associated with the transformation of phytoplankton diatom communities into sediment assemblages, to demonstrate sediment core integrity and representativity and to calibrate modern diatom assemblages against contemporary climate records. The preliminary results from the interrelated studies of phytoplankton, sediment traps and sediment cores used in GEOPASS-NERC, demonstrate the complexity of links between the living and fossil systems. Furthermore, the nature of recent sedimentation in Lake Baikal is spatially variable and incompletely known. This poses a major challenge to palaeolimnological interpretation. Turbidite deposits and differential preservation of microfossils, combined with inadequate knowledge of the modern ecology of endemic diatoms, all conspire to obfuscate the sedimentary record of environmental change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climatic and environmental records from low, middle, and high latitude ice cores greatly increase our knowledge of the course of past events. This historical perspective is essential to predict climatic oscillations, dominated as they may be by increasing greenhouse gas concentrations. Forcing factors, internal and external, that have operated in the past will continue to influence the course of events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Several snow accumulation time series derived from ice cores and extending over 3 to 5 centuries are examined for spatial and temporal climatic information. ... A significant observation is the widespread depression of net snow accumulation during the latter part of the "Little Ice Age". This initially suggests sea surface temperatures were significantly depressed during the same period. However, prior to this, the available core records indicate generally higher than average precipitation rates. This also implies that influences such as shifted storm tracks or a dustier atmosphere may have been involved. Without additional spatial data coverage, these observations should properly be studied using a coupled (global) ocean/atmosphere GCM.