11 resultados para Genetic-evidence

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic variation of Contracaecum ogmorhini (sensu lato) populations from different otariid seals of the northern and southern hemisphere was studied on the basis of 18 enzyme loci as well as preliminary sequence analysis of the mitochondrial cyt b gene (260 bp). Samples were collected from Zalophus californianus in the boreal region and from Arctocephalus pusillus pusillus, A. pusillus doriferus and A. australis from the austral region. Marked genetic heterogeneity was found between C. ogmorhini (sensu lato) samples from the boreal and austral region, respectively. Two loci (Mdh-2 and NADHdh) showed fixed differences and a further three loci (Iddh, Mdh-1 and 6Pgdh) were highly differentiated between boreal and austral samples. Their average genetic distance was DNei = 0.36 at isozyme level. At mitochondrial DNA level, an average proportion of nucleotide substitution of 3.7% was observed. These findings support the existence of two distinct sibling species, for which the names C. ogmorhini (sensu stricto) and C. margolisi n. sp., respectively, for the austral and boreal taxon, are proposed. A description for C. margolisi n. sp. is provided. No diagnostic morphological characters have so far been detected; on the other hand, two enzyme loci, Mdh-2 and NADHdh, fully diagnostic between the two species, can be used for the routine identification of males, females and larval stages. Mirounga leonina was found to host C. ogmorhini (s.s.) inmixed infections with C. osculatum (s.l.) (of which C. ogmorhini (s.l.) was in the past considered to be a synonym) and C. miroungae; no hybrid genotypes were found,confirming the reproductive isolation of these three anisakid species. The hosts and geographical range so far recorded for C. margolisi n. sp. and C. ogmorhini (s.s.) are given.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Morphological development of the larvae and small juveniles of estuary perch (Macquaria colonorum) (17 specimens, 4.8−13.5 mm body length) and Australian bass (M. novemaculeata) (38 specimens, 3.3−14.1 mm) (Family Percichthyidae) is described from channel-net and beach-seine collections of both species, and from reared larvae of M. novemaculeata. The larvae of both are characterized by having 24−25 myomeres, a large triangular gut (54−67% of BL) in postflexion larvae, small spines on the preopercle and interopercle, a smooth supraocular ridge, a small to moderate gap between the anus and the origin of the anal fin, and distinctive pigment patterns. The two species can be distinguished most easily by the different distribution of their melanophores. The adults spawn in estuaries and larvae are presumed to remain in estuaries before migrating to adult freshwater habitat. However, larvae of both species were collected as they entered a central New South Wales estuary from the ocean on flood tides; such transport may have consequences for the dispersal of larvae among estuaries. Larval morphology and published genetic evidence supports a reconsideration of the generic arrangement of the four species currently placed in the genus Macquaria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summer flounder, Paralichthys dentatus, are managed as a single stock along the Atlantic coast from the U.S.– Canada border to the southern border of North Carolina. Justification of the single-stock approach is based on lack of genetic evidence for multiple stocks and the difficulty presented by managing the species from Cape Hatteras to the U.S.–Canada border. In this review, we present an interpretation of various morphometric, meristic, biochemical, and tagging studies, published and unpublished, that indicate the presence of two, or possibly three, distinct stocks in the management area. In addition, we have included new data from a tagging study that was conducted on juveniles from Virginia that aids in defining the stock(s) north of Cape Hatteras. Summer flounder, overfished for the past two decades, is recovering, and reconsideration of proposed stock structure could have direct implications for management policy decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variation in the allele frequencies of five microsatellite loci was surveyed in 1256 individual spotted seatrout (Cynoscion nebulosus) obtained from 12 bays and estuaries from Laguna Madre, Texas, to Charlotte Harbor, Florida, to St. John’s River on the Florida Atlantic Coast. Texas and Louisiana collection sites were resampled each year for two to four years (1998−2001). Genetic differentiation was observed. Spotted seatrout from Florida waters were strongly differentiated from spotted seatrout collected in Louisiana and Texas. The greatest genetic discontinuity was observed between Tampa Bay and Charlotte Harbor, and Charlotte Harbor seatrout were most similar to Atlantic Coast spotted seatrout. Texas and Louisiana samples were not strongly structured within the northwestern Gulf of Mexico and there was little evidence of temporal differentiation within bays. These findings are contrary to those of earlier analyses with allozymes and mitochondrial DNA (mtDNA) where evidence of spatial differentiation was found for spotted seatrout resident on the Texas coast. The differences in genetic structure observed among these markers may reflect differences in response to selective pressure, or may be due to differences in underlying genetic processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The giant freshwater prawn (Macrobrachium rosenbergii) is cultured widely around the world but little is known about the levels and patterns of genetic diversity in either wild or cultured stocks. Studies have suggested that genetic diversity may be relatively low in some cultured stocks due to the history of how they were founded and subsequent exposure to repeated population bottlenecks in hatcheries. In contrast, wild stocks have an extensive distribution that extends from Southern Asia across Southeast (SE) Asia to the Pacific region. Therefore, wild stocks could be an important resource for genetic improvement of culture stocks in the future. Understanding the extent and patterns of genetic diversity in wild giant freshwater prawn stocks will assist decisions about the direction future breeding programs may take. Wild stock genetic diversity was examined using a 472 base-pair segment of the 16S rRNA gene in 18 wild populations collected from across the natural range of the species. Two major clades ("eastern" and "western") were identifi ed either side of Huxley’s line, with a minimum divergence of 6.2 per cent, which implies separation since the Miocene period (5-10 MYA). While divergence estimates within major clades was small (maximum 0.9 per cent), evidence was also found for population structuring at a lower spatial scale. This will be examined more intensively with a faster evolving mtDNA gene in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loggerhead sea turtles (Caretta caretta) are migratory, long-lived, and slow maturing. They are difficult to study because they are seen rarely and their habitats range over vast stretches of the ocean. Movements of immature turtles between pelagic and coastal developmental habitats are particularly difficult to investigate because of inadequate tagging technologies and the difficulty in capturing significant numbers of turtles at sea. However, genetic markers found in mitochondrial DNA (mtDNA) provide a basis for predicting the origin of juvenile turtles in developmental habitats. Mixed stock analysis was used to determine which nesting populations were contributing individuals to a foraging aggregation of immature loggerhead turtles (mean 63.3 cm straight carapace length [SCL]) captured in coastal waters off Hutchinson Island, Florida. The results indicated that at least three different western Atlantic loggerhead sea turtle subpopulations contribute to this group: south Florida (69%), Mexico (20%), and northeast Florida-North Carolina (10%). The conservation and management of these immature sea turtles is complicated by their multinational genetic demographics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used allozyme, microsatellite, and mitochondrial DNA (mtDNA) data to test for spatial and interannual genetic diversity in wall-eye pollock (Theragra chalcogramma) from six spawning aggregations representing three geographic regions: Gulf of Alaska, eastern Bering Sea, and eastern Kamchatka. Interpopulation genetic diversity was evident primarily from the mtDNA and two allozyme loci (SOD-2*, MPI*). Permutation tests ˆindicated that FST values for most allozyme and microsatellite loci were not significantly greater than zero. The microsatellite results suggested that high locus polymorphism may not be a reliable indicator of power for detecting population differentiation in walleye pollock. The fact that mtDNA revealed population structure and most nuclear loci did not suggests that the effective size of most walleye pollock populations is large (genetic drift is weak) and migration is a relatively strong homogenizing force. The allozymes and mtDNA provided mostly concordant estimates of patterns of spatial genetic variation. These data showed significant genetic variation between North American and Asian populations. In addition, two spawning aggregations in the Gulf of Alaska, in Prince William Sound, and off Middleton Island, appeared genetically distinct from walleye pollock spawning in the Shelikof Strait and may merit management as a distinct stock. Finally, we found evidence of interannual genetic variation in two of three North American spawning aggregations, similar in magnitude to the spatial variation among North American walleye pol-lock. We suggest that interannual genetic variation in walleye pollock may be indicative of one or more of the following factors: highly variable reproductive success, adult philopatry, source-sink metapopulation structure, and intraannual variation (days) in spawning timing among genetically distinct but spatially identical spawning aggregates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A total of 361 caudal fin samples were collected from adult A. stellatus specimens caught in the north Caspian Sea, including specimens from Kazakhstan (Ural River), Russia (Volga River), Azerbaijan (Kura River), specimens caught in the south Caspian Sea including specimens from Fishery Zone 1 (from Astara to Anzali), Fishery Zone 2 (from Anzali to Ramsar), Fishery Zone 3 (from Nowshahr to Babolsar), Fishery Zone 4 (from Miyankaleh to Gomishan) as well as from specimens caught in Turkmenistan (all specimens were collected during the sturgeon stock assessment survey). About 2 g of fin tissue was removed from each caudal fin sample, stored in 96% ethyl alcohol and transferred to the genetic laboratory of the International Sturgeon Research Institute. Genomic DNA was extracted using phenol-chloroform method. The quality and quantity of DNA was assessed using 1% Agarose gel electrophoresis and Polymerase Chain Reaction (PCR) was conducted on the target DNA using 15 paired microsatellite primer. PCR products were electrophoresed on polyacrylamide gels (6%) that were stained using silver nitrate. Electrophoretic patterns and DNA bands were analyzed with BioCapt software. Allele count and frequency, genetic diversity, expected heterozygosity and observed heterozygosity allele number, and the effective allele number, genetic similarity and genetic distance, FST and RST were calculated. The Hardy Wienberg Equilibrium based on X2 and Analysis of Molecular Variance (AMOVA) at 10% confidence level was calculated using the Gene Alex software. Dendrogram for genetic distances and identities were calculated using TFPGA program for any level of the hierarchy. It is evident from the results obtained that the 15 paired primers studied, polymorphism was observed in 10 pairs in 12 loci, while one locus did not produce DNA bands. Mean allele number was 13.6. Mean observed and expected heterozygosity was 0.86 and 0.642, respectively. It was also seen that specimens from all regions were not in Hardy Wienberg Equilibrium in most of the loci (P≤0.001). Highest Fst (0.063) was observed when comparing specimens from Fishery Zone 2 and Fishery Zone 4 (Nm=3.7) and lowest FST (0.028) was observed when comparing specimens from the Volga River and those from the Ural River (8.7). Significant differences (P<0.01) were observed between RST recorded in the specimens studied. Highest genetic distance (0.604) and lowest genetic resemblance (0.547) were observed between specimens from Fishery zones 2 and 4. Lowest genetic distance (0.311) and highest genetic resemblance (0.733) was observed between specimens from Turkmenistan and specimens from Fishery zone 1. Based on the genetic dendrogeram tree derived by applying UPGMA algorithm, A. stellatus specimens from Fishery zone 2 or in other words specimens from the Sepidrud River belong to one cluster which divides into two clusters, one of which includes specimens from Fishery zones 1, 3 and 4 and specimens from Turkmenistan while the other cluster includes specimens from Ural, Volga and Kura Rivers. It is thus evident that the main population of this species belongs to the Sepidrud River. Results obtained from the present study show that at least eight different populations of A. stellatus are found in the north and south Caspian Sea, four of which are known populations including the Ural River population, the Volga River population, the Kura River population and the Sepidrud River populations. The four other populations identified belonging to Fishery zones 1, 3, and 4 and to Turkmenistan are most probably late or early spawners of the spring run and autumn run of each of the major rivers mentioned. Specific markers were also identified for each of the populations identified. The Ural River population can be identified using primers Spl-68, 54b and Spl-104, 163 170, 173, the Volga River population can be identified using primers LS-54b and Spl-104, 170, 173 113a and similarly the population from the Kura River can be identified using primers LS-34, 54b and Spl-163, 173 and that from the Sepidrud River can be identified using primers LS-19, 34, 54b and Spl-105, 113b. This study gives evidence of the presence of different populations of this species and calls for serious measures to be taken to protect the genetic stocks of these populations. Considering that the population of A. stellatus in Fishery zone 2 is an independent population of the Sepidrud River in the Gilan Province, the catch of these fishes in the region needs to be controlled and regulated in order to restore the declining stocks of this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ngege, Oreochromis esculentus, originally formed the mainstay of the Lake Victoria Region (LVR) fisheries. Together with its indigenous congener O. variabilis, it was displaced from Lakes Victoria and Kyoga of LVR and was found to survive as isolated small populations within the peripheral minor lakes and reservoirs around the two lakes. Displacement of the two LVR indigenous tilapiines was thought to be principally driven by changed lake environment and predation by the introduced Nile perch, but also competition and genetic swamping by the closely related introduced and comparatively more ecologically versatile tilapine species. In a study carried out in the LVR between 1993 and 2003, micro satellites and RAPD markers were used to analyse the remnant populations so as to establish the population structure and extant genetic diversity of O. esculentus. Analyses indicated that the surviving O. esculentus retained a high proportion of genetic diversity with high differentiation between units an indication of genetic exchange between indigenous and introduced Nile tilapia where the two forms co-existed. While this heightened concern for genetic swamping of the remnant population units by the introduced tilapiines it was noteworthy that in a few of the satellite lakes where the O. esculentus was dominant evidence for introgression was weak.