48 resultados para Genetic code
em Aquatic Commons
Resumo:
Pelagic juvenile rockfish (Sebastes spp.) collected in surveys designed to assess juvenile salmonids and other species in the Gulf of Alaska in 1998 and 2000–2003 provide an opportunity to document the occurrence of the pelagic juveniles of several species of rockfish. Often, species identification of rockfish is difficult or impossible at this stage of development (~20 to 60 mm), and few species indigenous to Alaska waters have been described. Use of mitochondrial DNA markers for rockfish species allowed unequivocal identification of ten species (S. aleutianus, S. alutus, S. borealis, S. entomelas, S. flavidus, S. melanops, S. pinniger, S. proriger, S. reedi, and S. ruberrimus) in subsamples from the collections. Other specimens were genetically assignable to groups of two or three species. Sebastes borealis, S. crameri, and S. reedi were identified using morphological data. Combining genetic and morphological data allowed successful resolution of the other species as S. emphaeus, probably S. ciliatus (although S. polyspinis cannot be totally ruled out), and S. polyspinis. Many specimens were initially morphologically indistinguishable from S. alutus, and several morphological groups included fish genetically identified as S. alutus. This paper details the characteristics of these pelagic juveniles to facilitate morphological identification of these species in future collections. (PDF file contains 32 pages.)
Resumo:
There is an increasing demand for fish in the world due to a growing population, better economic situation in some sectors, and greater awareness of health issues in relation to food. Since capture fisheries have stagnated, fish farming has become a very fast growing food production system. In this presentation, the author gives an overview of the technologies that are available for genetic improvement of fish, and briefly discuss their merit in the context of a sustainable development. He also discusses the essential prerequisites for effective dissemination of improved stock to farmers. It is concluded that genetic improvement programs based on selective breeding can substantially contribute to sustainable fish production systems. Furthermore, if such genetic improvement programs are followed up with effective dissemination strategies, they can result in a positive impact on farmers' incomes.
Resumo:
The use of reproductive and genetic technologies can increase the efficiency of selective breeding programs for aquaculture species. Four technologies are considered, namely: marker-assisted selection, DNA fingerprinting, in-vitro fertilization, and cryopreservation. Marker-assisted selection can result in greater genetic gain, particularly for traits difficult or expensive to measure, than conventional selection methods, but its application is currently limited by lack of high density linkage maps and by the high cost of genotyping. DNA fingerprinting is most useful for genetic tagging and parentage verification. Both in-vitro fertilization and cryopreservation techniques can increase the accuracy of selection while controlling accumulation of inbreeding in long-term selection programs. Currently, the cost associated with the utilization of reproductive and genetic techniques is possibly the most important factor limiting their use in genetic improvement programs for aquatic species.
Resumo:
(PDF contains 63 pages.)
Resumo:
The procedure to conduct horizontal starch gel electrophoresis on enzymes is described in detail. Areas covered are (I) collection and storage of specimens, (2) preparation of tissues, (3) preparation of a starch gel, (4) application of enzyme extracts to a gel, (5) setting up a gel for electrophoresis, (6) slicing a gel, and (7) staining a gel. Recipes are also included for 47 enzyme stains and 3 selected gel buffers. (PDF file contains 26 pages.)
Resumo:
La pêche, y compris l'aquaculture, apporte une contribution fondamentale à l'alimentation, à l'emploi, aux loisirs, au commerce et au bien-être économique des populations du monde entier, qu'il s'agisse des générations présentes ou futures, et devrait, par conséquent, être conduite de manière responsable. Le présent Code définit des principes et des normes internationales de comportement pour garantir des pratiques responsables en vue d'assurer effectivement la conservation, la gestion et le développement des ressources bioaquatiques, dans le respect des écosystèmes et de la biodiversité. Le Code reconnaît l'importance nutritionnelle, économique, sociale, environnementale et culturelle de la pêche et les intérêts de tous ceux qui sont concernés par ce secteur. Le Code prend en considération les caractéristiques biologiques des ressources et de leur environnement, ainsi que les intérêts des consommateurs et autres utilisateurs. Les Etats et tous ceux impliqués dans le secteur de la pêche sont encouragés à appliquer ce Code de manière effective. (PDF contains 53 pages)
Resumo:
(PDF contains 17 pages)
Resumo:
(PDF contains 19 pages)
Resumo:
Mozambique tilapia (Oreochromis mossambicus) is an indigenous tilapia species in southern Africa, until now the majority of genetic research has been carried out on Asian species of tilapia but this project aims to look at this African species. Those most suited to further development in aquaculture in southern Africa have now been identified. The genetic characterisation of strains has been completed. This information has aided the choice of strains for use in small scale aquaculture and for genetically male tilapia (GMT) production. They will form the basis of future strategies for further genetic improvement, and management of genetic diversity of Mozambique tilapia. The information will also contribute towards responsible management and development of genetic resources, particularly with regard to indigenous species of tilapia. Good progress has been made with the adaptation and implementation of producing the supermale fish required to produce all male offspring, resulting in faster growing populations of tilapia. The presence of the project and its associated activity has been a catalyst for a surge in interest in tilapia culture throughout southern Africa. [PDF contains 183 pages]
Resumo:
Genetic engineering now makes possible the insertion of DNA from many organisms into other prokaryotic, eukaryotic and viral hosts. This technology has been used to construct a variety of such genetically engineered microorganisms (GEMs). The possibility of accidental or deliberate release of GEMs into the natural environment has recently raised much public concern. The prospect of deliberate release of these microorganisms has prompted an increased need to understand the processes of survival, expression, transfer and rearrangement of recombinant DNA molecules in microbial communities. The methodology which is being developed to investigate these processes will greatly enhance our ability to study microbial population ecology.
Resumo:
Random Amplified Polymorphic DNA (RAPD) markers and cytochrome b (Cyt-b) gene sequences were utilized to fingerprint and construct phylogenetic relationships among four species of mackerel commonly found in the Straits of Malacca namely Rastrelliger kanagurta, R. brachysoma, Decapterus maruadsi and D. russelli. The UPGMA dendogram and genetic distance clearly showed that the individuals clustered into their own genus and species except for the Decapterus. These results were also supported by partial mtDNA cytochrome b gene sequences (279 bp) which found monotypic sequence for all Decapterus studied. Cytochrome b sequence phylogeny generated through Neighbor Joining (NJ) method was congruent with RAPD data. Results showed clear discrimination between both genera with average nucleotide divergence about 25.43%. This marker also demonstrated R. brachysoma and R. kanagurta as distinct species separated with average nucleotide divergence about 2.76%. However, based on BLAST analysis, this study indicated that the fish initially identified as D. maruadsi was actually D. russelli. The results highlighted the importance of genetic analysis for taxonomic validation, in addition to morphological traits.
Resumo:
Genetic analysis, using single locus probes for genomic DNA, revealed that the juvenile Atlantic salmon populations in the Rivers Leven, Rothay and Troutbeck were related but genetically distinct. This genetic differentiation is greater than might be expected (by comparison with other salmon populations in the UK) and it is recommended that no action is taken which might promote genetic exchange between the three rivers. Thus, future fisheries management practices should treat the salmon from each site as separate genetic stocks. It is unlikely that any attempts to encourage fish currently spawning in the River Leven (downstream of Windermere) to utilize the upper catchment will be successful. The faster growth rate of juvenile salmon in the River Leven, compared with the River Rothay, probably results from a difference in temperature between the inflowing streams and the main outflow of Windermere. Precocious sexual maturation of some male parr was found in all three populations but the incidence (13-33%) is well within the range reported for other waters. Because of their enhanced growth rate, it is likely that some of the precocious males in the River Leven were 0+ fish. A very high incidence of hybridization (>18%) between Atlantic salmon and brown/sea trout was found in Troutbeck but not in the other rivers. Mitochondrial DNA analysis of these hybrids revealed them to be the product of several, independent cross-fertilizations involving both sexes of both species. The implications of this finding are discussed in relation to the availability of suitable spawning sites in Troutbeck.