10 resultados para Genetic Gain

em Aquatic Commons


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of reproductive and genetic technologies can increase the efficiency of selective breeding programs for aquaculture species. Four technologies are considered, namely: marker-assisted selection, DNA fingerprinting, in-vitro fertilization, and cryopreservation. Marker-assisted selection can result in greater genetic gain, particularly for traits difficult or expensive to measure, than conventional selection methods, but its application is currently limited by lack of high density linkage maps and by the high cost of genotyping. DNA fingerprinting is most useful for genetic tagging and parentage verification. Both in-vitro fertilization and cryopreservation techniques can increase the accuracy of selection while controlling accumulation of inbreeding in long-term selection programs. Currently, the cost associated with the utilization of reproductive and genetic techniques is possibly the most important factor limiting their use in genetic improvement programs for aquatic species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An early establishment of selective breeding programs on Atlantic salmon has been crucial for the success of developing efficient and sustainable salmon farming in Norway. A national selective breeding program was initiated by AKVAFORSK at the beginning of the 1970s, by collecting fertilized eggs from more than 40 Norwegian river populations. Several private selective breeding programs were also initiated in the 1970s and 1980s. While these private programs were initiated using individual selection (i.e. massselection) to genetically improve growth, the national program was designed to gradually include all economically important traits in the breeding objective (i.e. growth, age at sexual maturation, disease resistance and quality traits) using a combined family and within-family selection strategy. Independent of which selection strategy and program design used, it is important to secure and maintain a broad genetic variation in the breeding populations to maximize selection response. It has been documented that genetically improved salmon from the national selective breeding program grow twice as fast as wild Atlantic salmon and require 25 per cent less feed, while salmon representing the private breeding programs all show an intermediate growth performance. As a result of efficient dissemination of genetically improved Atlantic salmon, the Norwegian salmon farming industry has reduced its feed costs by more than US$ 230 million per year! The national selective breeding program on Atlantic salmon was commercialized into a breeding company (AquaGen) in 1992. Five years later, several private companies and the AKVAFORSK Genetics Center (AFGC) established a second breeding company (SalmoBreed) using breeding candidates from one of the private breeding programs. These two breeding companies have similar products, but different strategies on how to organize the breeding program and to disseminate the genetically improved seed to the Norwegian salmon industry. Greater competition has increased the necessity to document the genetic gain obtained from the different programs and to market the economic benefits of farming the genetically improved breeds. Both breeding companies have organized their dissemination to get a sufficient share of the economic benefits in order to sustain and improve their breeding programs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present livestock breeding developments that could be taken into consideration in the genetic improvement of farmed aquaculture species, especially in freshwater fish. Firstly, the current breeding objective in aquatic species has focused almost exclusively on the improvement of body weight at harvest or on growth related traits. This is unlikely to be sufficient to meet the future needs of the aquaculture industry. To meet future demands breeding programs will most likely have to include additional traits, such as fitness related ones (survival, disease resistance), feed efficiency, or flesh quality, rather than only growth performance. In order to select for a multi-trait breeding objective, genetic variation in traits of interest and the genetic relationships among them need to be estimated. In addition, economic values for these traits will be required. Generally, there is a paucity of data on variable and fixed production costs in aquaculture, and this could be a major constraint in the further expansion of the breeding objectives. Secondly, genetic evaluation systems using the restricted maximum likelihood method (REML) and best linear unbiased prediction (BLUP) in a framework of mixed model methodology could be widely adopted to replace the more commonly used method of mass selection based on phenotypic performance. The BLUP method increases the accuracy of selection and also allows the management of inbreeding and estimation of genetic trends. BLUP is an improvement over the classic selection index approach, which was used in the success story of the genetically improved farmed tilapia (GIFT) in the Philippines, with genetic gains from 10 to 20 per cent per generation of selection. In parallel with BLUP, optimal genetic contribution theory can be applied to maximize genetic gain while constraining inbreeding in the long run in selection programs. Thirdly, by using advanced statistical methods, genetic selection can be carried out not only at the nucleus level but also in lower tiers of the pyramid breeding structure. Large scale across population genetic evaluation through genetic connectedness using cryopreserved sperm enables the comparison and ranking of genetic merit of all animals across populations, countries or years, and thus the genetically superior brood stock can be identified and widely used and exchanged to increase the rate of genetic progress in the population as a whole. It is concluded that sound genetic programs need to be established for aquaculture species. In addition to being very effective, fully pedigreed breeding programs would also enable the exploration of possibilities of integrating molecular markers (e.g., genetic tagging using DNA fingerprinting, marker (gene) assisted selection) and reproductive technologies such as in-vitro fertilization using cryopreserved spermatozoa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pelagic juvenile rockfish (Sebastes spp.) collected in surveys designed to assess juvenile salmonids and other species in the Gulf of Alaska in 1998 and 2000–2003 provide an opportunity to document the occurrence of the pelagic juveniles of several species of rockfish. Often, species identification of rockfish is difficult or impossible at this stage of development (~20 to 60 mm), and few species indigenous to Alaska waters have been described. Use of mitochondrial DNA markers for rockfish species allowed unequivocal identification of ten species (S. aleutianus, S. alutus, S. borealis, S. entomelas, S. flavidus, S. melanops, S. pinniger, S. proriger, S. reedi, and S. ruberrimus) in subsamples from the collections. Other specimens were genetically assignable to groups of two or three species. Sebastes borealis, S. crameri, and S. reedi were identified using morphological data. Combining genetic and morphological data allowed successful resolution of the other species as S. emphaeus, probably S. ciliatus (although S. polyspinis cannot be totally ruled out), and S. polyspinis. Many specimens were initially morphologically indistinguishable from S. alutus, and several morphological groups included fish genetically identified as S. alutus. This paper details the characteristics of these pelagic juveniles to facilitate morphological identification of these species in future collections. (PDF file contains 32 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing demand for fish in the world due to a growing population, better economic situation in some sectors, and greater awareness of health issues in relation to food. Since capture fisheries have stagnated, fish farming has become a very fast growing food production system. In this presentation, the author gives an overview of the technologies that are available for genetic improvement of fish, and briefly discuss their merit in the context of a sustainable development. He also discusses the essential prerequisites for effective dissemination of improved stock to farmers. It is concluded that genetic improvement programs based on selective breeding can substantially contribute to sustainable fish production systems. Furthermore, if such genetic improvement programs are followed up with effective dissemination strategies, they can result in a positive impact on farmers' incomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The procedure to conduct horizontal starch gel electrophoresis on enzymes is described in detail. Areas covered are (I) collection and storage of specimens, (2) preparation of tissues, (3) preparation of a starch gel, (4) application of enzyme extracts to a gel, (5) setting up a gel for electrophoresis, (6) slicing a gel, and (7) staining a gel. Recipes are also included for 47 enzyme stains and 3 selected gel buffers. (PDF file contains 26 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mozambique tilapia (Oreochromis mossambicus) is an indigenous tilapia species in southern Africa, until now the majority of genetic research has been carried out on Asian species of tilapia but this project aims to look at this African species. Those most suited to further development in aquaculture in southern Africa have now been identified. The genetic characterisation of strains has been completed. This information has aided the choice of strains for use in small scale aquaculture and for genetically male tilapia (GMT) production. They will form the basis of future strategies for further genetic improvement, and management of genetic diversity of Mozambique tilapia. The information will also contribute towards responsible management and development of genetic resources, particularly with regard to indigenous species of tilapia. Good progress has been made with the adaptation and implementation of producing the supermale fish required to produce all male offspring, resulting in faster growing populations of tilapia. The presence of the project and its associated activity has been a catalyst for a surge in interest in tilapia culture throughout southern Africa. [PDF contains 183 pages]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic engineering now makes possible the insertion of DNA from many organisms into other prokaryotic, eukaryotic and viral hosts. This technology has been used to construct a variety of such genetically engineered microorganisms (GEMs). The possibility of accidental or deliberate release of GEMs into the natural environment has recently raised much public concern. The prospect of deliberate release of these microorganisms has prompted an increased need to understand the processes of survival, expression, transfer and rearrangement of recombinant DNA molecules in microbial communities. The methodology which is being developed to investigate these processes will greatly enhance our ability to study microbial population ecology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Random Amplified Polymorphic DNA (RAPD) markers and cytochrome b (Cyt-b) gene sequences were utilized to fingerprint and construct phylogenetic relationships among four species of mackerel commonly found in the Straits of Malacca namely Rastrelliger kanagurta, R. brachysoma, Decapterus maruadsi and D. russelli. The UPGMA dendogram and genetic distance clearly showed that the individuals clustered into their own genus and species except for the Decapterus. These results were also supported by partial mtDNA cytochrome b gene sequences (279 bp) which found monotypic sequence for all Decapterus studied. Cytochrome b sequence phylogeny generated through Neighbor Joining (NJ) method was congruent with RAPD data. Results showed clear discrimination between both genera with average nucleotide divergence about 25.43%. This marker also demonstrated R. brachysoma and R. kanagurta as distinct species separated with average nucleotide divergence about 2.76%. However, based on BLAST analysis, this study indicated that the fish initially identified as D. maruadsi was actually D. russelli. The results highlighted the importance of genetic analysis for taxonomic validation, in addition to morphological traits.