6 resultados para Gaussian curve

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth is one of the most important characteristics of cultured species. The objective of this study was to determine the fitness of linear, log linear, polynomial, exponential and Logistic functions to the growth curves of Macrobrachium rosenbergii obtained by using weekly records of live weight, total length, head length, claw length, and last segment length from 20 to 192 days of age. The models were evaluated according to the coefficient of determination (R2), and error sum off square (ESS) and helps in formulating breeders in selective breeding programs. Twenty full-sib families consisting 400 PLs each were stocked in 20 different hapas and reared till 8 weeks after which a total of 1200 animals were transferred to earthen ponds and reared up to 192 days. The R2 values of the models ranged from 56 – 96 in case of overall body weight with logistic model being the highest. The R2 value for total length ranged from 62 to 90 with logistic model being the highest. In case of head length, the R2 value ranged between 55 and 95 with logistic model being the highest. The R2 value for claw length ranged from 44 to 94 with logistic model being the highest. For last segment length, R2 value ranged from 55 – 80 with polynomial model being the highest. However, the log linear model registered low ESS value followed by linear model for overall body weight while exponential model showed low ESS value followed by log linear model in case of head length. For total length the low ESS value was given by log linear model followed by logistic model and for claw length exponential model showed low ESS value followed by log linear model. In case of last segment length, linear model showed lowest ESS value followed by log linear model. Since, the model that shows highest R2 value with low ESS value is generally considered as the best fit model. Among the five models tested, logistic model, log linear model and linear models were found to be the best models for overall body weight, total length and head length respectively. For claw length and last segment length, log linear model was found to be the best model. These models can be used to predict growth rates in M. rosenbergii. However, further studies need to be conducted with more growth traits taken into consideration

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computer program has been written in order to generate a population of fishes following a Von Bertalanffy growth curve with a random Gaussian variability for birth dates and growth parameters K and L ∞. Standard deviations for these 3 parameters are chosen separately for each run. Fishing and natural mortalities are applied to this population. Using as an input parameters usually taken for yellowfin in the eastern Atlantic, the simulation suggests a standard deviation between 1 and 2 months for the birth dates in this population. It also indicates that increasing levels of fishing mortalities must produce a better agreement between age and length for the larger fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The von Bertalanffy growth function is used for length based analysis of growth and mortality patterns for management of fisheries. However, certain fish have growth patterns that the VBGF may not be able to describe adequately.e.g. the Acanthurus lineatus in Samoa. In such cases a two phase VBGF may be a useful approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of red sea urchins (Strongylocentrotus franciscanus) was modeled by using tag-recapture data from northern California. Red sea urchins (n=211) ranging in test diameter from 7 to 131 mm were examined for changes in size over one year. We used the function Jt+1 = Jt + f(Jt) to model growth, in which Jt is the jaw size (mm) at tagging, and Jt+1 is the jaw size one year later. The function f(Jt), represents one of six deterministic models: logistic dose response, Gaussian, Tanaka, Ricker, Richards, and von Bertalanffy with 3, 3, 3, 2, 3, and 2 minimization parameters, respectively. We found that three measures of goodness of fi t ranked the models similarly, in the order given. The results from these six models indicate that red sea urchins are slow growing animals (mean of 7.2 ±1.3 years to enter the fishery). We show that poor model selection or data from a limited range of urchin sizes (or both) produces erroneous growth parameter estimates and years-to-fishery estimates. Individual variation in growth dominated spatial variation at shallow and deep sites (F=0.246, n=199, P=0.62). We summarize the six models using a composite growth curve of jaw size, J, as a function of time, t: J = A(B – e–Ct) + Dt, in which each model is distinguished by the constants A, B, C, and D. We suggest that this composite model has the flexibility of the other six models and could be broadly applied. Given the robustness of our results regarding the number of years to enter the fishery, this information could be incorporated into future fishery management plans for red sea urchins in northern California.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study deals with the length increment data of 15 adult Labeo rohita (Ham.) over a period of five months by the applicatin of finite difference method at an altitude of 1496 m above mean sea level at Shilllong, Meghalaya.