70 resultados para Gateway National Recreation Area

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximately 100,000 cubic yards of sand was transported to the ocean beach to renourish the eroded beach front during the period December 1985 through May 1986. The ocean beach at Sebastian Inlet SRA was previously studied in a project examining the benthic macrofauna and the fishes of the nearshore zone during 1981-1982 (Allenbaugh, 1984; Peters, 1984; Nelson, unpublished). In view of the existing data, the US Army Corps of Engineers provided funding to study the effects of the beach renourishment activities at Sebastian Inlet SRA on the benthic macrofauna and the fishes of the nearshore zone. This is the report on the results of this study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As more people discover coastal and marine protected areas as destinations for leisure-time pursuits, the task of managing coastal resources while providing opportunities for high quality visitor experiences becomes more challenging. Many human impacts occur at these sites; some are caused by recreation and leisure activities on-site, and others by activities such as agriculture, aquaculture, or residential and economic development in surrounding areas. Coastal management professionals are continually looking for effective ways to prevent or mitigate negative impacts of visitor use. (PDF contains 8 pages) Most coastal and marine protected area managers are challenged with balancing two competing goals—protection of natural and cultural resources and provision of opportunities for public use. In most cases, some level of compromise between the goals is necessary, where one goal constrains or “outweighs” the other. Often there is a lack of clear agreement about the priority of these competing goals. Consequently, while natural resource decisions should ultimately be science-based and objective, such decisions are frequently made under uncertainty, relying heavily upon professional judgment. These decisions are subject to a complex array of formal and informal drivers and constraints—data availability, timing, legal mandate, political will, diverse public opinion, and physical, human, and social capital. This paper highlights assessment, monitoring, and planning approaches useful to gauge existing resource and social conditions, determine feasibility of management actions, and record decision process steps to enhance defensibility. Examples are presented from pilot efforts conducted at the Rookery Bay National Estuarine Research Reserve (NERR) and Ten Thousand Islands National Wildlife Refuge (NWR) in South Florida.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The National Marine Sanctuaries Act (16 U.S.C. 1431, as amended) gives the Secretary of Commerce the authority to designate discrete areas of the marine environment as National Marine Sanctuaries and provides the authority to promulgate regulations to provide for the conservation and management of these marine areas. The waters of the Outer Washington Coast were recognized for their high natural resource and human use values and placed on the National Marine Sanctuary Program Site Evaluation List in 1983. In 1988, Congress directed NOAA to designate the Olympic Coast National Marine Sanctuary (Pub. L. 100-627). The Sanctuary, designated in May 1994, worked with the U.S. Coast Guard to request the International Maritime Organization designate an Area to be Avoided (ATBA) on the Olympic Coast. The IMO defines an ATBA as "a routeing measure comprising an area within defined limits in which either navigation is particularly hazardous or it is exceptionally important to avoid casualties and which should be avoided by all ships, or certain classes of ships" (IMO, 1991). This ATBA was adopted in December 1994 by the Maritime Safety Committee of the IMO, “in order to reduce the risk of marine casualty and resulting pollution and damage to the environment of the Olympic Coast National Marine Sanctuary”, (IMO, 1994). The ATBA went into effect in June 1995 and advises operators of vessels carrying petroleum and/or hazardous materials to maintain a 25-mile buffer from the coast. Since that time, Olympic Coast National Marine Sanctuary (OCNMS) has created an education and monitoring program with the goal of ensuring the successful implementation of the ATBA. The Sanctuary enlisted the aid of the U.S. and Canadian coast guards, and the marine industry to educate mariners about the ATBA and to use existing radar data to monitor compliance. Sanctuary monitoring efforts have targeted education on tank vessels observed transiting the ATBA. OCNMS's monitoring efforts allow quantitative evaluation of this voluntary measure. Finally, the tools developed to monitor the ATBA are also used for the more general purpose of monitoring vessel traffic within the Sanctuary. While the Olympic Coast National Marine Sanctuary does not currently regulate vessel traffic, such regulations are within the scope of the Sanctuary’s Final Environmental Impact Statement/Management Plan. Sanctuary staff participate in ongoing maritime and environmental safety initiatives and continually seek opportunities to mitigate risks from marine shipping.(PDF contains 44 pages.)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gray’s Reef National Marine Sanctuary (GRNMS) is exploring the concept of a research area (RA) within its boundaries. The idea of a research area was first suggested in public scoping meetings held prior to the review of the Gray’s Reef Management Plan. An RA is a region specifically designed for conducting controlled scientific studies in the absence of confounding factors. As a result, a multidisciplinary group gathered by GRNMS was convened to consider the issue. This Research Area Working Group (RAWG) requested that a suite of analyses be conducted to evaluate the issue quantitatively. To meet this need, a novel selection procedure and geographic information system (GIS) was created to find the optimal location for an RA while balancing the needs of research and existing users. This report and its associated GIS files describe the results of the requested analyses and enable further quantitative investigation of this topic by the RAWG and GRNMS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diking and holding water on salt marshes ("impounding" the marsh) is a management technique used on Merritt Island National Wildlife Refuge (MINWR) and elsewhere in the Southeast to: a) prevent the reproduction of saltmarsh mosquitos, and b) attract wintertering waterfowl and other marsh, shore, and wading birds. Because of concern that diking and holding water may interfere with the production of estuarine fish and shellfish, impoundment managers are being asked to consider altering management protocol to reduce or eliminate any such negative influence. How to change protocol and preserve effective mosquito control and wildlife management is a decision of great complexity because: a) the relationships between estuarine organisms and the fringing salt marshes at the land-water interface are complex, and b) impounded marshes are currently good habitat for a variety of species of fish and wildlife. Most data collection by scientists and managers in the area has not been focused on this particular problem. Furthermore, collection of needed data may not be possible before changes in protocol are demanded. Therefore, the purpose of this document is two-fold: 1) to suggest management alternatives, given existing information, and 2) to help identify research needs that have a high probability of leading to improved simultaneous management of mosquitos, waterfowl, other wildlife, freshwater fish, and estuarine fish and shellfish on the marshland of the Merritt Island National Wildlife Refuge. (92 page document)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Channel Islands—sometimes called the Galapagos of North America—are known for their great beauty, rich biodiversity, cultural heritage, and recreational opportunities. In 1980, in recognition of the islands’ importance, the United States Congress established a national park encompassing 5 of California’s Channel Islands (Santa Barbara, Anacapa, Santa Cruz, Santa Rosa, and San Miguel Islands) and waters within 1 nautical mile of the islands. In the same year, Congress declared a national marine sanctuary around each of these islands, including waters up to 6 nautical miles offshore. Approximately 60,000 people visit the Channel Islands each year for aquatic recreation such as fishing, sailing, kayaking, wildlife watching, surfing, and diving. Another 30,000 people visit the islands for hiking, camping, and sightseeing. Dozens of commercial fishing boats based in Santa Barbara, Ventura, Oxnard, and other ports go to the Channel Islands to catch squid, spiny lobster, sea urchin, rockfish, crab, sheephead, flatfish, and sea cucumber, among other species. In the past few decades, advances in fishing technology and the rising number of fishermen, in conjunction with changing ocean conditions and diseases, have contributed to declines in some marine fishes and invertebrates at the Channel Islands. In 1998, citizens from Santa Barbara and Ventura proposed establishment of no-take marine reserves at the Channel Islands, beginning a 4-year process of public meetings, discussions, and scientific analyses. In 2003, the California Fish and Game Commission designated a network of marine protected areas (MPAs) in state waters around the northern Channel Islands. In 2006 and 2007, the National Oceanic and Atmospheric Administration (NOAA) extended the MPAs into the national marine sanctuary’s deeper, federal waters. To determine if the MPAs are protecting marine species and habitats, scientists are monitoring ecological changes. They are studying changes in habitats; abundance and size of species of interest; the ocean food web and ecosystem; and movement of fish and invertebrates from MPAs to surrounding waters. Additionally, scientists are monitoring human activities such as commercial and recreational fisheries, and compliance with MPA regulations. This booklet describes some results from the first 5 years of monitoring the Channel Islands MPAs. Although 5 years is not long enough to determine if the MPAs will accomplish all of their goals, this booklet offers a glimpse of the changes that are beginning to take place and illustrates the types of information that will eventually be used to assess the MPAs’ effectiveness. (PDF contains 24 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Navassa is a small, undeveloped island in the Windward Passage between Jamaica and Haiti. It was designated a National Wildlife Refuge under the jurisdiction of the U.S. Fish and Wildlife Service in 1999, but the remote location makes management and enforcement challenging, and the area is regularly fished by artisanal fishermen from Haiti. In April 2006, the NOAA Center for Coastal Fisheries and Habitat Research conducted a research cruise to Navassa. The cruise produced the first high-resolution multibeam bathymetry for the area, which will facilitate habitat mapping and assist in refuge management. A major emphasis of the cruise was to study the impact of Haitian fishing gear on benthic habitats and fish communities; however, in 10 days on station only one small boat was observed with five fishermen and seven traps. Fifteen monitoring stations were established to characterize fish and benthic communities along the deep (28-34 m) shelf, as these areas have been largely unstudied by previous cruises. The fish communities included numerous squirrelfishes, triggerfishes, and parrotfishes. Snappers and grouper were also present but no small individuals were observed. Similarly, conch surveys indicated the population was in low abundance and was heavily skewed towards adults. Analysis of the benthic photoquadrats is currently underway. Other cruise activities included installation of a temperature logger network, sample collection for stable isotope analyses to examine trophic structure, and drop camera surveys to ground-truth habitat maps and overhead imagery. (PDF contains 58 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study was conducted to assess the status of ecological condition and potential human-health risks in subtidal estuarine waters throughout the North Carolina National Estuarine Research Reserve System (NERRS) (Currituck Sound, Rachel Carson, Masonboro Island, and Zeke’s Island). Field work was conducted in September 2006 and incorporated multiple indicators of ecosystem condition including measures of water quality (dissolved oxygen, salinity, temperature, pH, nutrients and chlorophyll, suspended solids), sediment quality (granulometry, organic matter content, chemical contaminant concentrations), biological condition (diversity and abundances of benthic fauna, fish contaminant levels and pathologies), and human dimensions (fish-tissue contaminant levels relative to human-health consumption limits, various aesthetic properties). A probabilistic sampling design permitted statistical estimation of the spatial extent of degraded versus non-degraded condition across these estuaries relative to specified threshold levels of the various indicators (where possible). With some exceptions, the status of these reserves appeared to be in relatively good to fair ecological condition overall, with the majority of the area (about 54%) having various water quality, sediment quality, and biological (benthic) condition indicators rated in the healthy to intermediate range of corresponding guideline thresholds. Only three stations, representing 10.5% of the area, had one or more of these indicators rated as poor/degraded in all three categories. While such a conclusion is encouraging from a coastal management perspective, it should be viewed with some caution. For example, although co-occurrences of adverse biological and abiotic environmental conditions were limited, at least one indicator of ecological condition rated in the poor/degraded range was observed over a broader area (35.5%) represented by 11 of the 30 stations sampled. In addition, the fish-tissue contaminant data were not included in these overall spatial estimates; however, the majority of samples (77% of fish that were analyzed, from 79%, of stations where fish were caught) contained inorganic arsenic above the consumption limits for human cancer risks, though most likely derived from natural sources. Similarly, aesthetic indicators are not reflected in these spatial estimates of ecological condition, though there was evidence of noxious odors in sediments at many of the stations. Such symptoms reflect a growing realization that North Carolina estuaries are under multiple pressures from a variety of natural and human influences. These data also suggest that, while the current status of overall ecological condition appears to be good to fair, long-term monitoring is warranted to track potential changes in the future. This study establishes an important baseline of overall ecological condition within NC NERRS that can be used to evaluate any such future changes and to trigger appropriate management actions in this rapidly evolving coastal environment. (PDF contains 76 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Red drum is one ofthe most popular species sought by anglers in Florida Bay, yet juveniles are rarely encountered. We evaluated Florida Bay as a nursery area for red drum by sampling for recently-settled late larvae in basin areas within the bay with an epi-benthic sled at six stations in November 2000, and at seven stations during December 2000 through February 2001. In November 2000 we surveyed potential sampling sites in quiet backwaters adjacent to mangroves for juvenile red drum. A total of 202 sites were sampled mainly in northern Florida Bay and adjacent waters with a cast net. We collected only one recently-settled red drum larvae and no juveniles. Obviously the sites that we sampled in Florida Bay and adjacent waters are not nursery habitat for this valuable species. Sled collections were dominated by bay anchovy, Anchoa mitchilli, but densities were biased by one collection. Five small resident species were among the dominant species: rainwater killifish, Lucania parva; dusky pipefish, Syngnathus floridae; dwarf seahorse, Hippocampus zosterae; and clown goby, Microgobius gulosus. Three species that spawn outside Florida Bay in the GulfofMexico were common: pinfish, Lagodon rhomboides; pigfish, Orthopristis chrysoptera; and silver perch, Bairdiella chrysoura. Twenty-seven species were collected with the cast net. Hardhead silversides (Atherinomorus stipes), bay anchovy, tidewater mojarra (Eucinostomus harengulus), silver jenny (Eucinostomus gula), and goldspotted killifish (Floridichthys carpio) were the most common in cast net collections. Although only one red drum was collected, we were able to: (1) identify mesohaline waters from our cast net sites to test our preliminary assessment that mesohaline habitat might be limited in Florida Bay, (2) document the distribution and abundance of fishes collected by cast net that should enhance our understanding of ichthyofauna in the Northern Subdivision ofFlorida Bay and adjacent waters, and (3) from epibenthic sled collections, describe the habitats, abundance and distribution of recently settled larvae/small juveniles/small resident fishes during late fall and winter. This information should be useful to managers and future research. (PDF contains 34 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since 1999, NOAA’s Biogeography Branch of the Center for Coastal Monitoring and Assessment (CCMA-BB) has been working with federal and territorial partners to characterize, monitor, and assess the status of the marine environment around northeastern St. Croix, U.S. Virgin Islands. This effort is part of the broader NOAA Coral Reef Conservation Program’s (CRCP) National Coral Reef Ecosystem Monitoring Program (NCREMP). With support from CRCP’s NCREMP, CCMA conducts the “Caribbean Coral Reef Ecosystem Monitoring project” (CREM) with goals to: (1) spatially characterize and monitor the distribution, abundance, and size of marine fauna associated with shallow water coral reef seascapes (mosaics of coral reefs, seagrasses, sand and mangroves); (2) relate this information to in situ fine-scale habitat data and the spatial distribution and diversity of habitat types using benthic habitat maps; (3) use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting; (4) establish the efficacy of those management decisions; and (5) develop data collection and data management protocols. The monitoring effort in northeastern St. Croix was conducted through partnerships with the National Park Service (NPS) and the Virgin Islands Department of Planning and Natural Resources (VI-DPNR). The geographical focal point of the research is Buck Island Reef National Monument (BIRNM), a protected area originally established in 1961 and greatly expanded in 2001; however, the work also encompassed a large portion of the recently created St. Croix East End Marine Park (EEMP). Project funding is primarily provided by NOAA CRCP, CCMA and NPS. In recent decades, scientific and non-scientific observations have indicated that the structure and function of the coral reef ecosystem around northeastern St. Croix have been adversely impacted by a wide range of environmental stressors. The major stressors have included the mass Diadema die off in the early 1980s, a series of hurricanes beginning with Hurricane Hugo in 1989, overfishing, mass mortality of Acropora corals due to disease and several coral bleaching events, with the most severe mass bleaching episode in 2005. The area is also an important recreational resource supporting boating, snorkeling, diving and other water based activities. With so many potential threats to the marine ecosystem and a dramatic change in management strategy in 2003 when the park’s Interim Regulations (Presidential Proclamation No. 7392) established BIRNM as one of the first fully protected marine areas in NPS system, it became critical to identify existing marine fauna and their spatial distributions and temporal dynamics. This provides ecologically meaningful data to assess ecosystem condition, support decision making in spatial planning (including the evaluation of efficacy of current management strategies) and determine future information needs. The ultimate goal of the work is to better understand the coral reef ecosystems and to provide information toward protecting and enhancing coral reef ecosystems for the benefit of the system itself and to sustain the many goods and services that it offers society. This Technical Memorandum contains analysis of the first six years of fish survey data (2001-2006) and associated characterization of the benthos (1999-2006). The primary objectives were to quantify changes in fish species and assemblage diversity, abundance, biomass and size structure and to provide spatially explicit information on the distribution of key species or groups of species and to compare community structure inside (protected) versus outside (fished) areas of BIRNM. (PDF contains 100 pages).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Executive Summary: Baseline characterization of resources is an essential part of marine protected area (MPA) management and is critical to inform adaptive management. Gray’s Reef National Marine Sanctuary (GRNMS) currently lacks adequate characterization of several key resources as identified in the 2006 Final Management Plan. The objectives of this characterization were to fulfill this need by characterizing the bottom fish, benthic features, marine debris, and the relationships among them for the different bottom types within the sanctuary: ledges, sparse live bottom, rippled sand, and flat sand. Particular attention was given to characterizing the different ledge types, their fish communities, and the marine debris associated with them given the importance of this bottom type to the sanctuary. The characterization has been divided into four sections. Section 1 provides a brief overview of the project, its relevance to sanctuary needs, methods of site selection, and general field procedures. Section 2 provides the survey methods, results, discussion, and recommendations for monitoring specific to the benthic characterization. Section 3 describes the characterization of marine debris. Section 4 is specific to the characterization of bottom fish. Field surveys were conducted during August 2004, May 2005, and August 2005. A total of 179 surveys were completed over ledge bottom (n=92), sparse live bottom (n=51), flat sand (n=20), and rippled sand (n=16). There were three components to each field survey: fish counting, benthic assessment, and quantification of marine debris. All components occurred within a 25 x 4 m belt transect. Two divers performed the transect at each survey site. One diver was responsible for identification of fish species, size, and abundance using a visual survey. The second diver was responsible for characterization of benthic features using five randomly placed 1 m2 quadrats, measuring ledge height and other benthic structures, and quantifying marine debris within the entire transect. GRNMS is composed of four main bottom types: flat sand, rippled sand, sparsely colonized live bottom, and densely colonized live bottom (ledges). Independent evaluation of the thematic accuracy of the GRNMS benthic map produced by Kendall et al. (2005) revealed high overall accuracy (93%). Most discrepancies between map and diver classification occurred during August 2004 and likely can be attributed to several factors, including actual map or diver errors, and changes in the bottom type due to physical forces. The four bottom types have distinct physical and biological characteristics. Flat and rippled sand bottom types were composed primarily of sand substrate and secondarily shell rubble. Flat sand and rippled sand bottom types were characterized by low percent cover (0-2%) of benthic organisms at all sites. Although the sand bottom types were largely devoid of epifauna, numerous burrows indicate the presence of infaunal organisms. Sparse live bottom and ledges were colonized by macroalgae and numerous invertebrates, including coral, gorgonians, sponges, and “other” benthic species (such as tunicates, anemones, and bryozoans). Ledges and sparse live bottom were similar in terms of diversity (H’) given the level of classification used here. However, percent cover of benthic species, with the exception of gorgonians, was significantly greater on ledge than on sparse live bottom. Percent biotic cover at sparse live bottom ranged from 0.7-26.3%, but was greater than 10% at only 7 out of 51 sites. Colonization on sparse live bottom is likely inhibited by shifting sands, as most sites were covered in a layer of sediment up to several centimeters thick. On ledge bottom type, percent cover ranged from 0.42-100%, with the highest percent cover at ledges in the central and south-central region of GRNMS. Biotic cover on ledges is influenced by local ledge characteristics. Cluster analysis of ledge dimensions (total height, undercut height, undercut width) resulted in three main categories of ledges, which were classified as short, medium, and tall. Median total percent cover was 97.6%, 75.1%, and 17.7% on tall, medium, and short ledges, respectively. Total percent cover and cover of macroalgae, sponges, and other organisms was significantly lower on short ledges compared to medium and tall ledges, but did not vary significantly between medium and tall ledges. Like sparse live bottom, short ledges may be susceptible to burial by sand, however the results indicate that ledge height may only be important to a certain threshold. There are likely other factors not considered here that also influence spatial distribution and community structure (e.g., small scale complexity, ocean currents, differential settlement patterns, and biological interactions). GRNMS is a popular site for recreational fishing and boating, and there has been increased concern about the accumulation of debris in the sanctuary and potential effects on sanctuary resources. Understanding the types, abundance, and distribution of debris is essential to improving debris removal and education efforts. Approximately two-thirds of all observed debris items found during the field surveys were fishing gear, and about half of the fishing related debris was monofilament fishing line. Other fishing related debris included leaders and spear gun parts, and non-gear debris included cans, bottles, and rope. The spatial distribution of debris was concentrated in the center of the sanctuary and was most frequently associated with ledges rather than at other bottom types. Several factors may contribute to this observation. Ledges are often targeted by fishermen due to the association of recreationally important fish species with this bottom type. In addition, ledges are structurally complex and are often densely colonized by biota, providing numerous places for debris to become stuck or entangled. Analysis of observed boat locations indicated that higher boat activity, which is an indication of fishing, occurs in the center of the sanctuary. On ledges, the presence and abundance of debris was significantly related to observed boat density and physiographic features including ledge height, ledge area, and percent cover. While it is likely that most fishing related debris originates from boats inside the sanctuary, preliminary investigation of ocean current data indicate that currents may influence the distribution and local retention of more mobile items. Fish communities at GRNMS are closely linked to benthic habitats. A list of species encountered, probability of occurrence, abundance, and biomass by habitat is provided. Species richness, diversity, composition, abundance, and biomass of fish all showed striking differences depending on bottom type with ledges showing the highest values of nearly all metrics. Species membership was distinctly separated by bottom type as well, although very short, sparsely colonized ledges often had a similar community composition to that of sparse live bottom. Analysis of fish communities at ledges alone indicated that species richness and total abundance of fish were positively related to total percent cover of sessile invertebrates and ledge height. Either ledge attribute was sufficient to result in high abundance or species richness of fish. Fish diversity (H`) was negatively correlated with undercut height due to schools of fish species that utilize ledge undercuts such as Pareques species. Concurrent analysis of ledge types and fish communities indicated that there are five distinct combinations of ledge type and species assemblage. These include, 1) short ledges with little or no undercut that lacked many of the undercut associated species except Urophycis earlii ; 2) tall, heavily colonized, deeply undercut ledges typically with Archosargus probatocephalus, Mycteroperca sp., and Pareques sp.; 3) tall, heavily colonized but less undercut with high occurrence of Lagodon rhomboides and Balistes capriscus; 4) short, heavily colonized ledges typically with Centropristis ocyurus, Halichoeres caudalis, and Stenotomus sp.; and 5) tall, heavily colonized, less undercut typically with Archosargus probatocephalus, Caranx crysos and Seriola sp.. Higher levels of boating activity and presumably fishing pressure did not appear to influence species composition or abundance at the community level although individual species appeared affected. These results indicate that merely knowing the basic characteristics of a ledge such as total height, undercut width, and percent cover of sessile invertebrates would allow good prediction of not only species richness and abundance of fish but also which particular fish species assemblages are likely to occur there. Comparisons with prior studies indicate some major changes in the fish community at GRNMS over the last two decades although the causes of the changes are unknown. Species of interest to recreational fishermen including Centropristis striata, Mycteroperca microlepis, and Mycteroperca phenax were examined in relation to bottom features, areas of assumed high versus low fishing pressure, and spatial dispersion. Both Mycteroperca species were found more frequently when undercut height of ledges was taller. They often were found together in small mixed species groups at ledges in the north central and southwest central regions of the sanctuary. Both had lower mode size and proportion of fish above the fishery size limit in heavily fished areas of the sanctuary (i.e. high boat density) despite the presence of better habitat in that region. Black sea bass, C. striata, occurred at 98% of the ledges surveyed and appeared to be evenly distributed throughout the sanctuary. Abundance was best explained by a positive relationship with percent cover of sessile biota but was also negatively related to presence of either Mycteroperca species. This may be due to predation by the Mycteroperca species or avoidance of sites where they are present by C. striata. Suggestions for monitoring bottom features, marine debris, and bottom fish at GRNMS are provided at the end of each chapter. The present assessment has established quantitative baseline characteristics of many of the key resources and use issues at GRNMS. The methods can be used as a model for future assessments to track the trajectory of GRNMS resources. Belt transects are ideally suited to providing efficient and quantitative assessment of bottom features, debris, and fish at GRNMS. The limited visibility, sensitivity of sessile biota, and linear nature of ledge habitats greatly diminish the utility of other sampling techniques. Ledges should receive the bulk of future characterization effort due to their importance to the sanctuary and high variability in physical structure, benthic composition, and fish assemblages. (PDF contains 107 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary: The offshore shelf and canyon habitats of the OCNMS (Fig. 1) are areas of high primary productivity and biodiversity that support extensive groundfish fisheries. Recent acoustic surveys conducted in these waters have indicated the presence of hard-bottom substrates believed to harbor unique deep-sea coral and sponge assemblages. Such fauna are often associated with shallow tropical waters, however an increasing number of studies around the world have recorded them in deeper, cold-water habitats in both northern and southern latitudes. These habitats are of tremendous value as sites of recruitment for commercially important fishes. Yet, ironically, studies have shown how the gear used in offshore demersal fishing, as well as other commercial operations on the seafloor, can cause severe physical disturbances to resident benthic fauna. Due to their exposed structure, slow growth and recruitment rates, and long life spans, deep-sea corals and sponges may be especially vulnerable to such disturbances, requiring very long periods to recover. Potential effects of fishing and other commercial operations in such critical habitats, and the need to define appropriate strategies for the protection of these resources, have been identified as a high-priority management issue for the sanctuary. To begin addressing this issue, an initial pilot survey was conducted June 1-12, 2004 at six sites in offshore waters of the OCNMS (Fig. 2, average depths of 147-265 m) to explore for the presence of deep-sea coral/sponge assemblages and to look for evidence of potential anthropogenic impacts in these critical habitats. The survey was conducted on the NOAA Ship McARTHUR-II using the Navy’s Phantom DHD2+2 remotely operated vehicle (ROV), which was equipped with a video camera, lasers, and a manipulator arm for the collection of voucher specimens. At each site, a 0.1-m2 grab sampler also was used to collect samples of sediments for the analysis of macroinfauna (> 1.0 mm), total organic carbon (TOC), grain size, and chemical contaminants. Vertical profiles of salinity, dissolved oxygen (DO), temperature, and pressure were recorded at each site with a small SeaCat conductivity-temperature-depth (CTD) profiler. Niskin bottles attached to the CTD also obtained near-bottom water samples in support of a companion study of microbial indicators of coral health and general ecological condition across these sites. All samples except the sediment-contaminant samples are being analyzed with present project funds. Original cruise plans included a total of 12 candidate stations to investigate (Fig. 3). However, inclement weather and equipment failures restricted the sampling to half of these sites. In spite of the limited sampling, the work completed was sufficient to address key project objectives and included several significant scientific observations. Foremost, the cruise was successful in demonstrating the presence of target deepwater coral species in these waters. Patches of the rare stony coral Lophelia pertusa, more characteristic of deepwater coral/sponge assemblages in the North Atlantic, were observed for the first time in OCNMS at a site in 271 meters of water. A large proportion of these corals consisted of dead and broken skeletal remains, and a broken gorgonian (soft coral) also was observed nearby. The source of these disturbances is not known. However, observations from several sites included evidence of bottom trawl marks in the sediment and derelict fishing gear (long lines). Preliminary results also support the view that these areas are important reservoirs of marine biodiversity and of value as habitat for demersal fishes. For example, onboard examination of 18 bottom-sediment grabs revealed benthic infaunal species representative of 14 different invertebrate phyla. Twenty-eight species of fishes from 11 families, including 11 (possibly 12) species of ommercially important rockfishes, also were identified from ROV video footage. These initial discoveries have sparked considerable interests in follow-up studies to learn more about the spatial extent of these assemblages and magnitude of potential impacts from commercial-fishing and other anthropogenic activities in the area. It is essential to expand our knowledge of these deep-sea communities and their vulnerability to potential environmental risks in order to determine the most appropriate management strategies. The survey was conducted under a partnership between NOAA’s National Centers for Coastal Ocean Science (NCCOS) and National Marine Sanctuary Program (NMSP) and included scientists from NCCOS, OCNMS, and several other west-coast State, academic, private, and tribal research institutions (see Section 4 for a complete listing of participating scientists). (PDF contains 20 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forward: Looe Key National Marine Sanctuary (LKNMS) was designated in 1981 to protect and promote the study, teaching, and wise use of the resources of Looe Key Sanctuary (Plate A). In order to wisely manage this valuable resource, a quantitative resource inventory was funded by the Sanctuary Programs Division (SPD), Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration (NOAA) in cooperation with the Southeast Fisheries Center, National Marine Fisheries Service, NOAA; the Cooperative Institute for Marine and Atmospheric Studies (CIMAS), University of Miami; the Fisher Island Laboratory, United States Geological Survey; and the St. Petersburg Laboratory, State of Florida Department of Natural Resources. This report is the result of this cooperative effort. The objective of this study was to quantitatively inventory selected resources of LKNMS in order to allow future monitoring of changes in the Sanctuary as a result of human or natural processes. This study, referred to as Phase I, gives a brief summary of past and present uses of the Sanctuary (Chapter 2); and describes general habitat types (Chapter 3), geology and sediment distribution (Chapter 4), coral abundance and distribution (Chapter 5), the growth history of the coral Montastraea annularis (Chapter 6), reef fish abundance and distribution (Chapter 7), and status of selected resources (Chapter 8). An interpretation of the results of the survey are provided for management consideration (Chapter 9). The results are expected to provide fundamental information for applied management, natural history interpretation, and scientific research. Numerous photographs and illustrations were used to supplement the report to make the material presented easier to comprehend (Plate B). We anticipate the information provided will be used by managers, naturalists, and the general public in addition to scientists. Unless otherwise indicated, all photographs were taken at Looe Key Reef by Dr. James A. Bohnsack. The top photograph in Plate 7.8 was taken by Michael C. Schmale. Illustrations were done by Jack Javech, NMFS. Field work was initiated in May 1983 and completed for the most part by October 1983 thanks to the cooperation of numerous people and organizations. In addition to the participating agencies and organizations we thank the Newfound Harbor Marine Institute and the Division of Parks and Recreation, State of Florida Department of Natural Resources for their logistical support. Special thanks goes to Billy Causey, the Sanctuary Manager, for his help, information, and comments. We thank in alphabetical order: Scott Bannerot, Margie Bastian, Bill Becker, Barbara Bohnsack, Grant Beardsley, John Halas, Raymond Hixon, Irene Hooper, Eric Lindblad, and Mike Schmale. We dedicate this effort to the memory of Ray Hixon who participated in the study and who loved Looe Key. (PDF contains 43 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Executive Summary: Tropical marine ecosystems in the Caribbean region are inextricably linked through the movement of pollutants, nutrients, diseases, and other stressors, which threaten to further degrade coral reef communities. The magnitude of change that is occurring within the region is considerable, and solutions will require investigating pros and cons of networks of marine protected areas (MPAs), cooperation of neighboring countries, improved understanding of how external stressors degrade local marine resources, and ameliorating those stressors. Connectivity can be broadly defined as the exchange of materials (e.g., nutrients and pollutants), organisms, and genes and can be divided into: 1) genetic or evolutionary connectivity that concerns the exchange of organisms and genes, 2) demographic connectivity, which is the exchange of individuals among local groups, and 3) oceanographic connectivity, which includes flow of materials and circulation patterns and variability that underpin much of all these exchanges. Presently, we understand little about connectivity at specific locations beyond model outputs, and yet we must manage MPAs with connectivity in mind. A key to successful MPA management is how to most effectively work with scientists to acquire the information managers need. Oceanography connectivity is poorly understood, and even less is known about the shape of the dispersal curve for most species. Dispersal kernels differ for various systems, species, and life histories and are likely highly variable in space and time. Furthermore, the implications of different dispersal kernels on population dynamics and management of species is unknown. However, small dispersal kernels are the norm - not the exception. Linking patterns of dispersal to management options is difficult given the present state of knowledge. The behavioral component of larval dispersal has a major impact on where larvae settle. Individual larval behavior and life history details are required to produce meaningful simulations of population connectivity. Biological inputs are critical determinants of dispersal outcomes beyond what can be gleaned from models of passive dispersal. There is considerable temporal and spatial variation to connectivity patterns. New models are increasingly being developed, but these must be validated to understand upstream-downstream neighborhoods, dispersal corridors, stepping stones, and source/sink dynamics. At present, models are mainly useful for providing generalities and generating hypotheses. Low-technology approaches such as drifter vials and oceanographic drogues are useful, affordable options for understanding local connectivity. The “silver bullet” approach to MPA design may not be possible for several reasons. Genetic connectivity studies reveal divergent population genetic structures despite similar larval life histories. Historical stochasticity in reproduction and/or recruitment likely has important, longlasting consequences on present day genetic structure. (PDF has 200 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This document presents the results of the first three monitoring events to track the recovery of a repaired coral reef injured by the M/V Elpis vessel grounding incident of November 11, 1989. This grounding occurred within the boundaries of what at the time was designated the Key Largo National Marine Sanctuary (NMS), now designated the Key Largo NMS Existing Management Area within the Florida Keys National Marine Sanctuary (FKNMS). Pursuant to the National Marine Sanctuaries Act (NMSA) 16 U.S.C. 1431 et seq., and the Florida Keys National Marine Sanctuary and Protection Act (FKNMSPA) of 1990, NOAA is the federal trustee for the natural and cultural resources of the FKNMS. Under Section 312 of the NMSA, NOAA has the authority to recover monetary damages for injury, destruction, or loss of Sanctuary resources, and to use the recovered monies to restore injured or lost sanctuary resources within the FKNMS. The restoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental and anthropogenic disturbances of the site over time. To evaluate restoration success, reference habitats adjacent to the restoration site are concurrently monitored to compare the condition of restored reef areas with natural coral reef areas unimpacted by the vessel grounding. Restoration of the site was completed September 1995, and thus far three monitoring events have occurred; one in the summer of 2004, one in the summer of 2005, and the latest in the summer of 2007. The monitoring in 2004 was in the nature of a “pilot project,” or proof of concept. Only the quantitative results of the 2005 and 2007 monitoring are presented and discussed. Monitoring has consisted of assessment of the structural stability of limestone boulders used in the restoration and comparison of the coral communities on the boulders and reference areas. Corals are divided into Gorgonians, Milleporans, and Scleractinians. Coral densities at the Restored and Reference areas for the 2005 and 2007 events are compared, and it is shown that the densities of all taxa in the Restored area are greater by 2007, though not significantly so. For the Scleractinians, number and percentage of colonies by species, as well as several common biodiversity indices are provided. The greater biodiversity of the Restored area is evidenced. Also, size-class frequency distributions for Agaricia spp. (Scleractinia) are presented. These demonstrate the approaching convergence of the Restored and Reference areas in this regard. An inter-annual comparison of densities, within both areas, for all three Orders, is presented. The most noteworthy finding was the relative consistency across time for all taxa in each area. Finally, certain anomalies regarding species settlement patterns are presented. (PDF contains 48 pages.)