10 resultados para Frequency range selection
em Aquatic Commons
Resumo:
Over the past 50 years, economic and technological developments have dramatically increased the human contribution to ambient noise in the ocean. The dominant frequencies of most human-made noise in the ocean is in the low-frequency range (defined as sound energy below 1000Hz), and low-frequency sound (LFS) may travel great distances in the ocean due to the unique propagation characteristics of the deep ocean (Munk et al. 1989). For example, in the Northern Hemisphere oceans low-frequency ambient noise levels have increased by as much as 10 dB during the period from 1950 to 1975 (Urick 1986; review by NRC 1994). Shipping is the overwhelmingly dominant source of low-frequency manmade noise in the ocean, but other sources of manmade LFS including sounds from oil and gas industrial development and production activities (seismic exploration, construction work, drilling, production platforms), and scientific research (e.g., acoustic tomography and thermography, underwater communication). The SURTASS LFA system is an additional source of human-produced LFS in the ocean, contributing sound energy in the 100-500 Hz band. When considering a document that addresses the potential effects of a low-frequency sound source on the marine environment, it is important to focus upon those species that are the most likely to be affected. Important criteria are: 1) the physics of sound as it relates to biological organisms; 2) the nature of the exposure (i.e. duration, frequency, and intensity); and 3) the geographic region in which the sound source will be operated (which, when considered with the distribution of the organisms will determine which species will be exposed). The goal in this section of the LFA/EIS is to examine the status, distribution, abundance, reproduction, foraging behavior, vocal behavior, and known impacts of human activity of those species may be impacted by LFA operations. To focus our efforts, we have examined species that may be physically affected and are found in the region where the LFA source will be operated. The large-scale geographic location of species in relation to the sound source can be determined from the distribution of each species. However, the physical ability for the organism to be impacted depends upon the nature of the sound source (i.e. explosive, impulsive, or non-impulsive); and the acoustic properties of the medium (i.e. seawater) and the organism. Non-impulsive sound is comprised of the movement of particles in a medium. Motion is imparted by a vibrating object (diaphragm of a speaker, vocal chords, etc.). Due to the proximity of the particles in the medium, this motion is transmitted from particle to particle in waves away from the sound source. Because the particle motion is along the same axis as the propagating wave, the waves are longitudinal. Particles move away from then back towards the vibrating source, creating areas of compression (high pressure) and areas of rarefaction (low pressure). As the motion is transferred from one particle to the next, the sound propagates away from the sound source. Wavelength is the distance from one pressure peak to the next. Frequency is the number of waves passing per unit time (Hz). Sound velocity (not to be confused with particle velocity) is the impedance is loosely equivalent to the resistance of a medium to the passage of sound waves (technically it is the ratio of acoustic pressure to particle velocity). A high impedance means that acoustic particle velocity is small for a given pressure (low impedance the opposite). When a sound strikes a boundary between media of different impedances, both reflection and refraction, and a transfer of energy can occur. The intensity of the reflection is a function of the intensity of the sound wave and the impedances of the two media. Two key factors in determining the potential for damage due to a sound source are the intensity of the sound wave and the impedance difference between the two media (impedance mis-match). The bodies of the vast majority of organisms in the ocean (particularly phytoplankton and zooplankton) have similar sound impedence values to that of seawater. As a result, the potential for sound damage is low; organisms are effectively transparent to the sound – it passes through them without transferring damage-causing energy. Due to the considerations above, we have undertaken a detailed analysis of species which met the following criteria: 1) Is the species capable of being physically affected by LFS? Are acoustic impedence mis-matches large enough to enable LFS to have a physical affect or allow the species to sense LFS? 2) Does the proposed SURTASS LFA geographical sphere of acoustic influence overlap the distribution of the species? Species that did not meet the above criteria were excluded from consideration. For example, phytoplankton and zooplankton species lack acoustic impedance mis-matches at low frequencies to expect them to be physically affected SURTASS LFA. Vertebrates are the organisms that fit these criteria and we have accordingly focused our analysis of the affected environment on these vertebrate groups in the world’s oceans: fishes, reptiles, seabirds, pinnipeds, cetaceans, pinnipeds, mustelids, sirenians (Table 1).
Resumo:
English: Food selection of first-feeding yellowfin tuna larvae was studied in the laboratory during October 1992. The larvae were hatched from eggs obtained by natural spawning of yellowfin adults held in sea pens adjacent to Ishigaki Island, Okinawa Prefecture, Japan. The larvae were fed mixed-prey assemblages consisting of size-graded wild zooplankton and cultured rotifers. Yellowfin larvae were found to be selective feeders during the first four days of feeding. Copepod nauplii dominated the diet numerically, by frequency of occurrence and by weight. The relative importance of juvenile and adult copepods (mostly cyclopoids) in the diet increased over the 4-day period. Rotifers, although they comprised 31 to 40 percent of the available forage, comprised less than 2.1 percent of the diet numerically. Prey selection indices were calculated taking into account the relative abundances of prey, the swimming speeds of yellowfin larvae and their prey, and the microscale influence of turbulence on encounter rates. Yellowfin selected for copepod nauplii and against rotifers, and consumed juvenile and adult copepods in proportion to their abundances. Yellowfin larvae may select copepod nauplii and cyclopoid juveniles and adults based on the size and discontinuous swimming motion of these prey. Rotifers may not have been selected because they were larger or because they exhibit a smooth swimming pattern. The best initial diet for the culture of yellowfin larvae may be copepod nauplii and cyclopoid juveniles and adults, due to the size, swimming motion, and nutritional content of these prey. If rotifers alone are fed to yellowfin larvae, the rotifers should be enriched with a nutritional supplement that is high in unsaturated fatty acids. Mouth size of yellowfin larvae increases rapidly within the first few days of feeding, which minimizes limitations on feeding due to prey size. Although yellowfin larvae initiate feeding on relatively small prey, they rapidly acquire the ability to add relatively large, rare prey items to the diet. This mode of feeding may be adaptive for the development of yellowfin larvae, which have high metabolic rates and live in warm mixed-layer habitats of the tropical and subtropical Pacific. Our analysis also indicates a strong potential for the influence of microscale turbulence on the feeding success of yellowfin larvae. --- Experiments designed to validate the periodicity of otolith increments and to examine growth rates of yellowfin tuna larvae were conducted at the Japan Sea-Farming Association’s (JASFA) Yaeyama Experimental Station, Ishigaki Island, Japan, in September 1992. Larvae were reared from eggs spawned by captive yellowfin enclosed in a sea pen in the bay adjacent to Yaeyama Station. Results indicate that the first increment is deposited within 12 hours of hatching in the otoliths of yellowfin larvae, and subsequent growth increments are formed dailyollowing the first 24 hours after hatching r larvae up to 16 days of age. Somatic and otolith gwth ras were examined and compared for yolksac a first-feeding larvae reared at constant water tempatures of 26�and 29°C. Despite the more rapid develo of larvae reared at 29°C, growth rates were nnificaifferent between the two treatments. Howeve to poor survival after the first four days, it was ssible to examine growth rates beyond the onset of first feeding, when growth differences may become more apparent. Somatic and otolith growth were also examined for larvae reared at ambient bay water temperatures during the first 24 days after hatching. timates of laboratory growth rates were come to previously reported values for laboratory-reared yelllarvae of a similar age range, but were lower than growth rates reported for field-collected larvae. The discrepancy between laboratory and field growth rates may be associated with suboptimal growth conditions in the laboratory. Spanish: Durante octubre de 1992 se estudió en el laboratorio la seleccalimento por larvaún aleta amarillmera alimentación. Las larvas provinieron de huevos obtenidosel desove natural de aletas amarillas adultos mantenidos en corrales marinos adyacentes a la Isla Ishigaki, Prefectura de Okinawa (Japón). Se alimentó a las larvas con presas mixtas de zooplancton silvestre clasificado por tamaño y rotíferos cultivados. Se descubrió que las larvas de aleta amarilla se alimentan de forma selectiva durante los cuatro primeros días de alimentación. Los nauplios de copépodo predominaron en la dieta en número, por frecuencia de ocurrencia y por peso. La importancia relativa de copépodos juveniles y adultos (principalmente ciclopoides) en la dieta aumentó en el transcurso del período de 4 días. Los rotíferos, pese a que formaban del 31 al 40% del alimento disponible, respondieron de menos del 2,1% de la dieta en número. Se calcularon índices de selección de presas tomando en cuenta la abundancia relativa de las presas, la velocidad de natación de las larvas de aleta amarilla y de sus presas, y la influencia a microescala de la turbulencia sobre las tasas de encuentro. Los aletas amarillas seleccionaron a favor de nauplios de copépodo y en contra de los rotíferos, y consumieron copépodos juveniles y adultos en proporción a su abundancia. Es posible que las larvas de aleta amarilla seleccionen nauplios de copépodo y ciclopoides juveniles y adultos con base en el tamaño y movimiento de natación discontinuo de estas presas. Es posible que no se hayan seleccionado los rotíferos a raíz de su mayor tamaño o su patrón continuo de natación. Es posible que la mejor dieta inicial para el cultivo de larvas de aleta amarilla sea nauplios de copépodo y ciclopoides juveniles y adultos, debido al tamaño, movimiento de natación, y contenido nutritivo de estas presas. Si se alimenta a las larvas de aleta amarilla con rotíferos solamente, se debería enriquecerlos con un suplemento nutritivo rico en ácidos grasos no saturados. El tamaño de la boca de las larvas de aleta amarilla aumenta rápidamente en los primeros pocos días de alimentación, reduciendo la limitación de la alimentación debida al tamaño de la presa. Pese a que las larvas de aleta amarilla inician su alimentación con presas relativamente pequeñas, se hacen rápidamente capaces de añadir presas relativamente grandes y poco comunes a la dieta. Este modo de alimentación podría ser adaptivo para el desarrollo de larvas de aleta amarilla, que tienen tasa metabólicas altas y viven en hábitats cálidos en la capa de mezcla en el Pacífico tropical y subtropical. Nuestro análisis indica también que la influencia de turbulencia a microescala es potencialmente importante para el éxito de la alimentación de las larvas de aleta amarilla. --- En septiembre de 1992 se realizaron en la Estación Experimental Yaeyama de la Japan Sea- Farming Association (JASFA) en la Isla Ishigaki (Japón) experimentos diseñados para validar la periodicidad de los incrementos en los otolitos y para examinar las tasas de crecimiento de las larvas de atún aleta amarilla. Se criaron las larvas de huevos puestos por aletas amarillas cautivos en un corral marino en la bahía adyacente a la Estación Yaeyama. Los resultados indican que el primer incremento es depositado menos de 12 horas después de la eclosión en los otolitos de las larvas de aleta amarilla, y que los incrementos de crecimiento subsiguientes son formados a diario a partir de las primeras 24 horas después de la eclosión en larvas de hasta 16 días de edad. Se examinaron y compararon las tasas de crecimiento somático y de los otolitos en larvas en las etapas de saco vitelino y de primera alimentación criadas en aguas de temperatura constante entre 26°C y 29°C. A pesar del desarrollo más rápido de las larvas criadas a 29°C, las tasas de crecimiento no fueron significativamente diferentes entre los dos tratamientos. Debido a la mala supervivencia a partir de los cuatro primeros días, no fue posibación, uando las diferencias en el crecimiento podrían hacerse más aparentes. Se examinó también el crecimiento somático y de los otolitos para larvas criadas en temperaturas de agua ambiental en la bahía durante los 24 días inmediatamente después de la eclosión. Nuestras estimaciones de las tasas de crecimiento en el laboratorio fueron comparables a valores reportados previamente para larvas de aleta amarilla de edades similares criadas en el laboratorio, pero más bajas que las tasas de crecimiento reportadas para larvas capturadas en el mar. La discrepancia entre las tasas de crecimiento en el laboratorio y el mar podría estar asociada con condiciones subóptimas de crecimiento en el lab
Resumo:
Codend selection of winter flounder (Pseudopleuronectes americanus) in 76-127 mm mesh codends was examined from experiments conducted in Long Island Sound during the spring of 1986-87. The results show a slightly larger size at selection than was found in earlier work as indicated by the selection factor, 2.31 in the present study compared with 2.2 and 2.24 from previous studies. Diamond mesh was found to have a length at 50% retention about 1 cm longer (Lso =22.6 cm), and a selection range (3.4 cm) about 1 cm narrower, than square mesh in 102-mm codends. Tow duration varied from 1 to 2 hours using 114-mm diamond mesh. As has been found in previous studies, tow duration and Lso are positively related, with I-hour tows averaging 24.6 cm and 2-hour tows averaging 26.6 cm. The importance of the slope of the selection curve was examined in yield-per-recruit analyses by comparing knife-edge and stepwise recruitment. In all mesh sizes, stepwise recruitment provides a more conservative estimate of yield in the presence of a minimum size limit. Differences in yield estimates between the two models were generally small (1-7%), except in the largest mesh size, 127 mm, where yield is overestimated by 10% when assuming knife-edge recruitment. (PDF file contains 16 pages.)
Resumo:
ENGLISH: A two-stage sampling design is used to estimate the variances of the numbers of yellowfin in different age groups caught in the eastern Pacific Ocean. For purse seiners, the primary sampling unit (n) is a brine well containing fish from a month-area stratum; the number of fish lengths (m) measured from each well are the secondary units. The fish cannot be selected at random from the wells because of practical limitations. The effects of different sampling methods and other factors on the reliability and precision of statistics derived from the length-frequency data were therefore examined. Modifications are recommended where necessary. Lengths of fish measured during the unloading of six test wells revealed two forms of inherent size stratification: 1) short-term disruptions of existing pattern of sizes, and 2) transition zones between long-term trends in sizes. To some degree, all wells exhibited cyclic changes in mean size and variance during unloading. In half of the wells, it was observed that size selection by the unloaders induced a change in mean size. As a result of stratification, the sequence of sizes removed from all wells was non-random, regardless of whether a well contained fish from a single set or from more than one set. The number of modal sizes in a well was not related to the number of sets. In an additional well composed of fish from several sets, an experiment on vertical mixing indicated that a representative sample of the contents may be restricted to the bottom half of the well. The contents of the test wells were used to generate 25 simulated wells and to compare the results of three sampling methods applied to them. The methods were: (1) random sampling (also used as a standard), (2) protracted sampling, in which the selection process was extended over a large portion of a well, and (3) measuring fish consecutively during removal from the well. Repeated sampling by each method and different combinations indicated that, because the principal source of size variation occurred among primary units, increasing n was the most effective way to reduce the variance estimates of both the age-group sizes and the total number of fish in the landings. Protracted sampling largely circumvented the effects of size stratification, and its performance was essentially comparable to that of random sampling. Sampling by this method is recommended. Consecutive-fish sampling produced more biased estimates with greater variances. Analysis of the 1988 length-frequency samples indicated that, for age groups that appear most frequently in the catch, a minimum sampling frequency of one primary unit in six for each month-area stratum would reduce the coefficients of variation (CV) of their size estimates to approximately 10 percent or less. Additional stratification of samples by set type, rather than month-area alone, further reduced the CV's of scarce age groups, such as the recruits, and potentially improved their accuracy. The CV's of recruitment estimates for completely-fished cohorts during the 198184 period were in the vicinity of 3 to 8 percent. Recruitment estimates and their variances were also relatively insensitive to changes in the individual quarterly catches and variances, respectively, of which they were composed. SPANISH: Se usa un diseño de muestreo de dos etapas para estimar las varianzas de los números de aletas amari11as en distintos grupos de edad capturados en el Océano Pacifico oriental. Para barcos cerqueros, la unidad primaria de muestreo (n) es una bodega de salmuera que contenía peces de un estrato de mes-área; el numero de ta11as de peces (m) medidas de cada bodega es la unidad secundaria. Limitaciones de carácter practico impiden la selección aleatoria de peces de las bodegas. Por 10 tanto, fueron examinados los efectos de distintos métodos de muestreo y otros factores sobre la confiabilidad y precisión de las estadísticas derivadas de los datos de frecuencia de ta11a. Se recomiendan modificaciones donde sean necesarias. Las ta11as de peces medidas durante la descarga de seis bodegas de prueba revelaron dos formas de estratificación inherente por ta11a: 1) perturbaciones a corto plazo en la pauta de ta11as existente, y 2) zonas de transición entre las tendencias a largo plazo en las ta11as. En cierto grado, todas las bodegas mostraron cambios cíclicos en ta11a media y varianza durante la descarga. En la mitad de las bodegas, se observo que selección por ta11a por los descargadores indujo un cambio en la ta11a media. Como resultado de la estratificación, la secuencia de ta11as sacadas de todas las bodegas no fue aleatoria, sin considerar si una bodega contenía peces de un solo lance 0 de mas de uno. El numero de ta11as modales en una bodega no estaba relacionado al numero de lances. En una bodega adicional compuesta de peces de varios lances, un experimento de mezcla vertical indico que una muestra representativa del contenido podría estar limitada a la mitad inferior de la bodega. Se uso el contenido de las bodegas de prueba para generar 25 bodegas simuladas y comparar los resultados de tres métodos de muestreo aplicados a estas. Los métodos fueron: (1) muestreo aleatorio (usado también como norma), (2) muestreo extendido, en el cual el proceso de selección fue extendido sobre una porción grande de una bodega, y (3) medición consecutiva de peces durante la descarga de la bodega. EI muestreo repetido con cada método y distintas combinaciones de n y m indico que, puesto que la fuente principal de variación de ta11a ocurría entre las unidades primarias, aumentar n fue la manera mas eficaz de reducir las estimaciones de la varianza de las ta11as de los grupos de edad y el numero total de peces en los desembarcos. El muestreo extendido evito mayormente los efectos de la estratificación por ta11a, y su desempeño fue esencialmente comparable a aquel del muestreo aleatorio. Se recomienda muestrear con este método. El muestreo de peces consecutivos produjo estimaciones mas sesgadas con mayores varianzas. Un análisis de las muestras de frecuencia de ta11a de 1988 indico que, para los grupos de edad que aparecen con mayor frecuencia en la captura, una frecuencia de muestreo minima de una unidad primaria de cada seis para cada estrato de mes-área reduciría los coeficientes de variación (CV) de las estimaciones de ta11a correspondientes a aproximadamente 10% 0 menos. Una estratificación adicional de las muestras por tipo de lance, y no solamente mes-área, redujo aun mas los CV de los grupos de edad escasos, tales como los reclutas, y mejoró potencialmente su precisión. Los CV de las estimaciones del reclutamiento para las cohortes completamente pescadas durante 1981-1984 fueron alrededor de 3-8%. Las estimaciones del reclutamiento y sus varianzas fueron también relativamente insensibles a cambios en las capturas de trimestres individuales y las varianzas, respectivamente, de las cuales fueron derivadas. (PDF contains 70 pages)
Resumo:
The relative catch performance and selectively of gillnets and trammel nets were investigated in 12 sampling stations in Lake Kainji, Nigeria. 3 types of nets with dimensions 50mx3m were constructed using 76mm and 178mm meshsizes for two gillnets, 76mm and 178mm meshsizes for the lint and ar mour nets of the trammelnets respectively. All the nets were randomly ganged together to form a fleet of nine nets each, and were set twice in each of the 12 stations which gave a total of 24 fishing operations. A total of 365 fish weighing 88.9kg and belonging to 16 different species were caught in all the nets. The trammelnet had the highest catch by number and weight constituting 60% and 69.22% of the total catch and weight respectively with a relative species Diversity Index of 0.82. This was followed by 76mm gillnet which constituted 38.63% by number, 28.09% by weight, 0.69 relative Species Diversity Index. The 178mm gillnet had the least catch of 1.37% and 2.9% by number and weight respectively with 0.25 relative Species Diversity Index. There was significant difference (P<0.05) in the number and weight of fish caught in the different nets. The minimum selection length for these species caught were the same for each net. The trammel net had a wider selection range that skewed to the right, a higher modal and median length indicating larger individual species being entangled in the net
Resumo:
Foraging habitat selection of nesting Great Egrets ( Ardea alba ) and Snowy Egrets ( Egretta thula ) was investigated within an estuary with extensive impounded salt marsh habitat. Using a geographic information system, available habitat was partitioned into concentric bands at five, ten, and 15 km radius from nesting colonies to assess the relative effects of habitat composition and distance on habitat selection. Snowy Egrets were more likely than Great Egrets to depart colonies and travel to foraging sites in groups, but both species usually arrived at sites that were occupied by other wading birds. Mean flight distances were 6.2 km (SE = 0.4, N = 28, range 1.8-10.7 km) for Great Egrets and 4.7 km (SE = 0.48, N = 31, range 0.7-12.5 km) for Snowy Egrets. At the broadest spatial scale both species used impounded (mostly salt marsh) and estuarine edge habitat more than expected based on availability while avoiding unimpounded (mostly fresh water wetland) habitat. At more local scales habitat use matched availability. Interpretation of habitat preference differed with the types of habitat that were included and the maximum distance that habitat was considered available. These results illustrate that caution is needed when interpreting the results of habitat preference studies when individuals are constrained in their choice of habitats, such as for central place foragers.
Resumo:
The tautog, Tautoga onitis (Linnaeus), ranges from Nova Scotia to South Carolina and has become a popular target for recreational and commercial fisheries. Although tautog are a multiple spawning species, reproductive potential, measured as annual fecundity, has not been estimated previously with methods (batch fecundity, spawning frequency) necessary for a species with indeterminate annual fecundity. A total of 960 tautog were collected from the mouth of the Rappahannock River in the lower Chesapeake Bay to 45 km offshore of Virginia’s coastline to investigate tautog reproductive biology in the southern portion of the species range. Tautog did not exhibit a 1:1 sex ratio; 56% were females. Male tautog reached 50% maturity at 218 mm TL, females at 224 mm TL. Tautog spawned from 7 April 1995 to 15 June 1995, at locations from the York River to 45 km offshore. Batch fecundity estimates ranged from 2800 to 181,200 eggs per spawning for female tautog age 3–9, total length 259– 516 mm. Mean batch fecundity ±SEM for female tautog ages 4–6 was 54,243 ±2472 eggs and 106,256 ±3837 eggs for females ages 7–9. Spawning frequency was estimated at 1.2 days, resulting in 58 spawning days per female in 1995. Estimates of potential annual fecundity for tautog ages 3–9 ranged from 160,000 to 10,510,000 eggs.
Resumo:
We investigated the migration and behavior of young Pacific Bluefin tuna (Thunnus orientalis) using archival tags. The archival tag measures environmental variables, records them in its memory, and estimates daily geographical locations based on measured light levels. Of 166 archival tags implanted in Pacific bluefin tuna that were released at the northeastern end of the East China Sea from 1995 to 1997, 30 tags were recovered, including one from a fish that migrated across the Pacific. This article describes swimming depth, ambient water temperature, and feeding frequency of young Pacific bluefin tuna based on retrieved data. Tag performance, effect of the tag on the fish, and horizontal movements of the species are described in another paper. Young Pacific bluefin tuna swim mainly in the mixed layer, usually near the sea surface, and swim in deeper water in daytime than at nighttime. They also exhibit a pattern of depth changes, corresponding to sunrise and sunset, apparently to avoid a specific low light level. The archival tags recorded temperature changes in viscera that appear to be caused by feeding, and those changes indicate that young Pacific bluefin tuna commonly feed at dawn and in the daytime, but rarely at dusk or at night. Water temperature restricts their distribution, as indicated by changes in their vertical distribution with the seasonal change in depth of the thermocline and by the fact that their horizontal distribution is in most cases confined to water in the temperature range of 14−20°C.
Resumo:
The stomachs of 819 Atlantic bluefin tuna (Thunnus thynnus) sampled from 1988 to 1992 were analyzed to compare dietary differences among five feeding grounds on the New England continental shelf (Jeffreys Ledge, Stellwagen Bank, Cape Cod Bay, Great South Channel, and South of Martha’s Vineyard) where a majority of the U.S. Atlantic commercial catch occurs. Spatial variation in prey was expected to be a primary influence on bluefin tuna distribution during seasonal feeding migrations. Sand lance (Ammodytes spp.), Atlantic herring (Clupea harengus), Atlantic mackerel (Scomber scombrus), squid (Cephalopoda), and bluefish (Pomatomus saltatrix) were the top prey in terms of frequency of occurrence and percent prey weight for all areas combined. Prey composition was uncorrelated between study areas, with the exception of a significant association between Stellwagen Bank and Great South Channel, where sand lance and Atlantic herring occurred most frequently. Mean stomach-contents biomass varied significantly for all study areas, except for Great South Channel and Cape Cod Bay. Jeffreys Ledge had the highest mean stomach-contents biomass (2.0 kg) among the four Gulf of Maine areas and Cape Cod Bay had the lowest (0.4 kg). Diet at four of the five areas was dominated by one or two small pelagic prey and several other pelagic prey made minor contributions. In contrast, half of the prey species found in the Cape Cod Bay diet were demersal species, including the frequent occurrence of the sessile fig sponge (Suberites ficus). Prey size selection was consistent over a wide range of bluefin length. Age 2–4 sand lance and Atlantic herring and age 0–1 squid and Atlantic mackerel were common prey for all sizes of bluefin tuna. This is the first study to compare diet composition of western Atlantic bluefin tuna among discrete feeding grounds during their seasonal migration to the New England continental shelf and to evaluate predator-prey size relationships. Previous studies have not found a common occurrence of demersal species or a pre-dominance of Atlantic herring in the diet of bluefin tuna.
Resumo:
In this study, Iranian and French male and female Oncorhynchus mykiss broodstocks were divided into two groups 50 and 24 respectively in Research center of genetic and breeding of coldwater fishes, Yasouj, Iran and the genetic structure of them was investigated using 6 microsatellite markers. Then 19 morphometric and 5 meristic of broodstock were measured and compared in two populations. Along with broodstock maturation, fertilization 1:1(female:male) were randomly assigned and occurred in 25 of 12 Iranian and French treatment respectively. Reproductive parameters were recorded for the whole family. Average number of observed alleles in Iranian and French stocks was 6.68 and 6.83, respectively. Average number of effective alleles in Iranian and French stocks was 3.13 and 3.45 respectively. Fixation index Fst was calculated based on allelic frequency between two stocks was 0.058 with significant difference between 2 stocks. Morphometric analysis showed significant difference between two stocks in 8 characteristics. Meristic characters was without significant difference in broodstock groups. Eyed percentage for french broodstock calculated zero and deleted. Fertilization rate (100-0), the eyed percentage (98- 0), The hatch rate (98-0), the average fecundity 4114.708, the average eggs size 4.88 mm, Survival in the first three months 19-73% calculated for Iranian broodstocks. Considering the quality of eggs and larvae at different stages and selection between the different family and the within family remained 10 treatments and are kept as future broodstocks. The relationship between fecundity - egg size, fecundity - weight , fecundity - length, egg size- weight was performed using regression. The results showed that Fecundity was influenced more by weight and productive length. The research is beginning to ID the broodstock in our country.