4 resultados para Fraser Coast, water processes, stable isotopes
em Aquatic Commons
Resumo:
Black rockfish (Sebastes melanops) range from California to Alaska and are found in both nearshore and shallow continental shelf waters (Love et al., 2002). Juveniles and subadults inhabit shallow water, moving deeper as they grow. Generally, adults are found at depths shallower than 55 meters and reportedly live up to 50 years. The species is currently managed by using information from an age-structured stock assessment model (Ralston and Dick, 2003).
Resumo:
Understanding the phase and timing of ontogenetic habitat shifts underlies the study of a species’ life history and population dynamics. This information is especially critical to the conservation and management of threatened and endangered species, such as the loggerhead sea turtle Caretta caretta. The early life of loggerheads consists of a terrestrial egg and hatchling stage, a posthatchling and juvenile oceanic, pelagic feeding stage, and a juvenile neritic, primarily benthic feeding stage. In the present study, novel approaches were applied to explore the timing of the loggerhead ontogenetic shift from pelagic to benthic habitats. The most recent years of somatic growth are recorded as annual marks in humerus cross sections. A consistent growth mark pattern in benthic juvenile loggerheads was identified, with narrow growth marks in the interior of the bone transitioning to wider growth marks at the exterior, indicative of a sharp increase in growth rates at the transitional growth mark. This increase in annual growth is hypothesized to correlate with the ontogenetic shift from pelagic to benthic habitats. Stable isotopes of carbon and nitrogen just interior and exterior to the transitional growth mark, as well as stable isotopes from pelagic and benthic flora, fauna and loggerhead stomach contents, were analyzed to determine whether this transition related to a diet shift. The results clearly indicate that a dietary shift from oceanic/pelagic to neritic/benthic feeding corresponds to a transitional growth mark. The combination of stable isotope analysis with skeletochronology can elucidate the ecology of cryptic life history stages during loggerhead ontogeny.
Resumo:
The stable isotopic composition of buried soil carbonate and organic matter from northern Pakistan and Nepal can be used to reconstruct aspects of the paleoecology of riverine floodplain ecosystems over the past 17 Myr. Probable dry woodland dominated the floodplain biomass of large rivers ancestral to the modern Indus and Ganges up to 7.3 Myr. Between 7.3 and about 6 Myr, tropical grasses gradually displaced woodland and have dominated floodplain biomasses to the present. The paleovegetational transition beginning about 7.3 Myr likely signals the onset of the strongly seasonal precipitation pattern that typifies the monsoonal climate of the region today. One possible analog to the dry woodland soils of the Miocene are found under the Sal woodlands of the northern Indian subcontinent, while undisturbed modern analogs to the Plio-Pleistocene floodplain grasslands can still be found in the Chitwan area of southern Nepal.
Resumo:
Health advisories are now posted in northern Florida Bay, adjacent to the Everglades, warning of high mercury concentrations in some species of gamefish. Highest concentrations of mercury in both forage fish and gamefish have been measured in the northeastern corner of Florida Bay, adjacent to the dominant freshwater inflows from the Everglades. Thirty percent of spotted seatrout (Cynoscion nebulosus Cuvier, 1830) analyzed exceeded Florida’s no consumption level of 1.5 μg g−1 mercury in this area. We hypothesized that freshwater draining the Everglades served as the major source of methylmercury entering the food web supporting gamefish. A lack of correlation between mercury concentrations and salinity did not support this hypothesis, although enhanced bioavailability of methylmercury is possible as freshwater is diluted with estuarine water. Stable isotopes of carbon, nitrogen, and sulfur were measured in fish to elucidate the shared pathways of methylmercury and nutrient elements through the food web. These data support a benthic source of both methylmercury and nutrient elements to gamefish within the eastern bay, as opposed to a dominant watershed source. Ecological characteristics of the eastern bay, including active redox cycling in near-surface sediments without excessive sulfide production are hypothesized to promote methylmercury formation and bioaccumulation in the benthos. Methylmercury may then accumulate in gamefish through a food web supported by benthic microalgae, detritus, pink shrimp (Farfantepenaeus duorarum Burkenroad, 1939), and other epibenthic feeders. Uncertainty remains as to the relative importance of watershed imports of methylmercury from the Everglades and in situ production in the bay, an uncertainty that needs resolution if the effects of Everglades restoration on mercury levels in fish are to be modeled and managed.