4 resultados para Forensic toxicology.
em Aquatic Commons
Resumo:
Recent years have seen a dramatic increase in litigation against the National Marine Fisheries Service, NOAA. Litigation may affect personnel throughout the agency, including scientists, whose work is often directly or indirectly influenced by complex legal requirements, but who may not be in a position to comment or engage in public dialogue. It may be helpful for scientists and other agency personnel to join the ongoing discussion in the legal community regarding the interface of science and law. This paper provides a starting point with a selected introduction to relevant legal literature in this area. It uses the phrase “forensic fisheries science” to describe the application of science to legal requirements in the fishery management context. It concludes with suggestions for future research that could assist NMFS scientists as they grapple with the challenge of using science to help the agency meet its complex legal requirements. Forensic: belonging to, used in, or suitable to courts of judicature or to public discussion and debate; argumentative, rhetorical; relating to or dealing with the application of scientific knowledge to legal problems (Merriam-Webster Online Dictionary )
Resumo:
Azaspiracids (AZA) are polyether marine toxins that accumulate in various shellfish species and have been associated with severe gastrointestinal human intoxications since 1995. This toxin class has since been reported from several countries, including Morocco and much of western Europe. A regulatory limit of 160 μg AZA/kg whole shellfish flesh was established by the EU in order to protect human health; however, in some cases, AZA concentrations far exceed the action level. Herein we discuss recent advances on the chemistry of various AZA analogs, review the ecology of AZAs, including the putative progenitor algal species, collectively interpret the in vitro and in vivo data on the toxicology of AZAs relating to human health issues, and outline the European legislature associated with AZAs.
Sensitivity of sturgeons to environmental hypoxia: a review of physiological and ecological evidence
Resumo:
In this essay, three lines of evidence are developed that sturgeons in the Chesapeake Bay and elsewhere are unusually sensitive to hypoxic conditions: 1. In comparison to other fishes,sturgeons have a limited behavioral and physiological capacity to respond to hypoxia. Basal metabolism, growth, feeding rate, and survival are sensitive to changes in oxygen level, which may indicate a relatively poor ability of sturgeons to oxyregulate. 2. During summertime, temperatures >20°C amplify the effect of hypoxia on sturgeons and other fishes due to a temperature oxygen "squeeze" (Coutant 1987). In bottom waters, this interaction results in substantial reduction of habitat; in dry years, sturgeon nursery habitats in the Chesapeake Bay may be particularly reduced or even eliminated. 3. While evidence for population level effects due to hypoxia is circumstantial, there are corresponding trends between the absence of Atlantic sturgeon reproduction in estuaries like the Chesapeake Bay where summertime hypoxia predominates on a system-wide scale. Also, the recent and dramatic recovery of shortnose sturgeon in the Hudson River (4-bid increase in abundance from 1980 to1995) may have been stimulated by improvement of a large portion of the nursery habitat that was restored from hypoxia to normoxia during the period 1973-1978.
Resumo:
Independent molecular markers based on mitochondrial and nuclear DNA were developed to provide positive identification of istiophorid and xiphiid billfishes (marlins, spearfishes, sailfish, and swordfish). Both classes of markers were based on amplification of short segments (<1.7 kb) of DNA by the polymerase chain reaction and subsequent digestion with informative restriction endonucleases. Candidate markers were evaluated for their ability to discriminate among the different species and the level of intraspecific variation they exhibited. The selected markers require no more than two restriction digestions to allow unambiguous identification, although it was not possible to distinguish between white marlin and striped marlin with any of the genetic characters screened in our study. Individuals collected from throughout each species’ range were surveyed with the selected markers demonstrating low levels of intraspecific character variation within species. The resulting keys provide two independent means for the forensic identification of fillets and for specific identification of early life history stages.