17 resultados para Forensic Tools
em Aquatic Commons
Resumo:
Policy makers, natural resource managers, regulators, and the public often call on scientists to estimate the potential ecological changes caused by both natural and human-induced stresses, and to determine how those changes will impact people and the environment. To develop accurate forecasts of ecological changes we need to: 1) increase understanding of ecosystem composition, structure, and functioning, 2) expand ecosystem monitoring and apply advanced scientific information to make these complex data widely available, and 3) develop and improve forecast and interpretative tools that use a scientific basis to assess the results of management and science policy actions. (PDF contains 120 pages)
Resumo:
Healthy coastal habitats are not only important ecologically; they also support healthy coastal communities and improve the quality of people’s lives. Despite their many benefits and values, coastal habitats have been systematically modified, degraded, and destroyed throughout the United States and its protectorates beginning with European colonization in the 1600’s (Dahl 1990). As a result, many coastal habitats around the United States are in desperate need of restoration. The monitoring of restoration projects, the focus of this document, is necessary to ensure that restoration efforts are successful, to further the science, and to increase the efficiency of future restoration efforts.
Resumo:
Executive Summary: The EcoGIS project was launched in September 2004 to investigate how Geographic Information Systems (GIS), marine data, and custom analysis tools can better enable fisheries scientists and managers to adopt Ecosystem Approaches to Fisheries Management (EAFM). EcoGIS is a collaborative effort between NOAA’s National Ocean Service (NOS) and National Marine Fisheries Service (NMFS), and four regional Fishery Management Councils. The project has focused on four priority areas: Fishing Catch and Effort Analysis, Area Characterization, Bycatch Analysis, and Habitat Interactions. Of these four functional areas, the project team first focused on developing a working prototype for catch and effort analysis: the Fishery Mapper Tool. This ArcGIS extension creates time-and-area summarized maps of fishing catch and effort from logbook, observer, or fishery-independent survey data sets. Source data may come from Oracle, Microsoft Access, or other file formats. Feedback from beta-testers of the Fishery Mapper was used to debug the prototype, enhance performance, and add features. This report describes the four priority functional areas, the development of the Fishery Mapper tool, and several themes that emerged through the parallel evolution of the EcoGIS project, the concept and implementation of the broader field of Ecosystem Approaches to Management (EAM), data management practices, and other EAM toolsets. In addition, a set of six succinct recommendations are proposed on page 29. One major conclusion from this work is that there is no single “super-tool” to enable Ecosystem Approaches to Management; as such, tools should be developed for specific purposes with attention given to interoperability and automation. Future work should be coordinated with other GIS development projects in order to provide “value added” and minimize duplication of efforts. In addition to custom tools, the development of cross-cutting Regional Ecosystem Spatial Databases will enable access to quality data to support the analyses required by EAM. GIS tools will be useful in developing Integrated Ecosystem Assessments (IEAs) and providing pre- and post-processing capabilities for spatially-explicit ecosystem models. Continued funding will enable the EcoGIS project to develop GIS tools that are immediately applicable to today’s needs. These tools will enable simplified and efficient data query, the ability to visualize data over time, and ways to synthesize multidimensional data from diverse sources. These capabilities will provide new information for analyzing issues from an ecosystem perspective, which will ultimately result in better understanding of fisheries and better support for decision-making. (PDF file contains 45 pages.)
Resumo:
Groupers are important components of commercial and recreational fisheries. Current methods of diver-based grouper census surveys could potentially benefit from development of remotely sensed methods of seabed classification. The goal of the present study was to determine if areas of high grouper abundance have characteristic acoustic signatures. A commercial acoustic seabed mapping system, QTC View Series V, was used to survey an area near Carysfort Reef, Florida Keys. Acoustic data were clustered using QTC IMPACT software, resulting in three main acoustic classes covering 94% of the area surveyed. Diver-based data indicate that one of the acoustic classes corresponded to hard substrate and the other two represented sediment. A new measurement of seabed heterogeneity, designated acoustic variability, was also computed from the acoustic survey data in order to more fully characterize the acoustic response (i.e., the signature) of the seafloor. When compared with diver-based grouper census data, both acoustic classification and acoustic variability were significantly different at sites with and without groupers. Sites with groupers were characterized by hard bottom substrate and high acoustic variability. Thus, the acoustic signature of a site, as measured by acoustic classification or acoustic variability, is a potentially useful tool for stratifying diver sampling effort for grouper census.
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop on Towed Vehicles: Undulating Platforms As Tools for Mapping Coastal Processes and Water Quality Assessment was convened February 5-7,2007 at The Embassy Suites Hotel, Seaside, California and sponsored by the ACT-Pacific Coast partnership at the Moss Landing Marine Laboratories (MLML). The TUV workshop was co-chaired by Richard Burt (Chelsea Technology Group) and Stewart Lamerdin (MLML Marine Operations). Invited participants were selected to provide a uniform representation of the academic researchers, private sector product developers, and existing and potential data product users from the resource management community to enable development of broad consensus opinions on the application of TUV platforms in coastal resource assessment and management. The workshop was organized to address recognized limitations of point-based monitoring programs, which, while providing valuable data, are incapable of describing the spatial heterogeneity and the extent of features distributed in the bulk solution. This is particularly true as surveys approach the coastal zone where tidal and estuarine influences result in spatially and temporally heterogeneous water masses and entrained biological components. Aerial or satellite based remote sensing can provide an assessment of the aerial extent of plumes and blooms, yet provide no information regarding the third dimension of these features. Towed vehicles offer a cost-effective solution to this problem by providing platforms, which can sample in the horizontal, vertical, and time-based domains. Towed undulating vehicles (henceforth TUVs) represent useful platforms for event-response characterization. This workshop reviewed the current status of towed vehicle technology focusing on limitations of depth, data telemetry, instrument power demands, and ship requirements in an attempt to identify means to incorporate such technology more routinely in monitoring and event-response programs. Specifically, the participants were charged to address the following: (1) Summarize the state of the art in TUV technologies; (2) Identify how TUV platforms are used and how they can assist coastal managers in fulfilling their regulatory and management responsibilities; (3) Identify barriers and challenges to the application of TUV technologies in management and research activities, and (4) Recommend a series of community actions to overcome identified barriers and challenges. A series of plenary presentation were provided to enhance subsequent breakout discussions by the participants. Dave Nelson (University of Rhode Island) provided extensive summaries and real-world assessment of the operational features of a variety of TUV platforms available in the UNOLs scientific fleet. Dr. Burke Hales (Oregon State University) described the modification of TUV to provide a novel sampling platform for high resolution mapping of chemical distributions in near real time. Dr. Sonia Batten (Sir Alister Hardy Foundation for Ocean Sciences) provided an overview on the deployment of specialized towed vehicles equipped with rugged continuous plankton recorders on ships of opportunity to obtain long-term, basin wide surveys of zooplankton community structure, enhancing our understanding of trends in secondary production in the upper ocean. [PDF contains 32 pages]
Resumo:
Ocean observing has been recognized by the US Commission on Ocean Policy, the Ocean Research and Resources Advisory Panel, the Joint Ocean Commission Initiative, and many other ocean policy entities and initiatives as foundational to meeting the nation’s need for more effective coastal and ocean management. The Interim Report of the Interagency Task Force on Ocean Policy (September 2009) has called for strengthening the nation’s capacity for observing the nation’s ocean, coastal, and Great Lakes systems. (PDF contains 3 pages)
Resumo:
Rockfishes (Sebastes spp.) are an important component of North Pacific marine ecosystems and commercial fisheries. Because the rocky, high-relief substrate that rockfishes often inhabit is inaccessible to standard survey trawls, population abundance assessments for many rockfish species are difficult. As part of a large study to classify substrate and compare complementary sampling tools, we investigated the feasibility of using an acoustic survey in conjunction with a lowered stereo-video camera, a remotely operated vehicle, and a modified bottom trawl to estimate rockfish biomass in untrawlable habitat. The Snakehead Bank south of Kodiak Island, Alaska, was surveyed repeatedly over 4 days and nights. Dusky rockfish (S. variabilis), northern rockfish (S. polyspinis), and harlequin rockfish (S. variegatus) were the most abundant species observed on the bank. Backscatter attributed to rockfish were collected primarily near the seafloor at a mean height off the bottom of 1.5 m. Total rockfish backscatter and the height of backscatter off the bottom did not differ among survey passes or between night and day. Biomass estimates for the 41 square nautical-mile area surveyed on this small, predominantly untrawlable bank were 2350 metric tons (t) of dusky rockfish, 331 t of northern rockfish, and 137 t of harlequin rockfish. These biomass estimates are 5–60 times the density estimated for these rockfish species by a regularly conducted bottom trawl survey covering the bank and the surrounding shelf. This finding shows that bottom trawl surveys can underestimate the abundance of rockfishes in untrawlable areas and, therefore, may underestimate overall population abundance for these species.
Resumo:
Recent years have seen a dramatic increase in litigation against the National Marine Fisheries Service, NOAA. Litigation may affect personnel throughout the agency, including scientists, whose work is often directly or indirectly influenced by complex legal requirements, but who may not be in a position to comment or engage in public dialogue. It may be helpful for scientists and other agency personnel to join the ongoing discussion in the legal community regarding the interface of science and law. This paper provides a starting point with a selected introduction to relevant legal literature in this area. It uses the phrase “forensic fisheries science” to describe the application of science to legal requirements in the fishery management context. It concludes with suggestions for future research that could assist NMFS scientists as they grapple with the challenge of using science to help the agency meet its complex legal requirements. Forensic: belonging to, used in, or suitable to courts of judicature or to public discussion and debate; argumentative, rhetorical; relating to or dealing with the application of scientific knowledge to legal problems (Merriam-Webster Online Dictionary )
Resumo:
We examined the reactions of fishes to a manned submersible and a remotely operated vehicle (ROV) during surveys conducted in habitats of rock and mud at depths of 30–408 m off central California in 2007. We observed 26 taxa for 10,550 fishes observed from the submersible and for 16,158 fishes observed from the ROV. A reaction was defined as a distinct movement of a fish that, for a benthic or hovering individual, was greater than one body length away from its initial position or, for a swimming individual, was a change of course or speed. Of the observed fishes, 57% reacted to the ROV and 11% reacted to the submersible. Aggregating species and those species initially observed off the seafloor reacted most often to both vehicles. Fishes reacted more often to each vehicle when they were >1 m above the seafloor (22% of all fishes >1 m above the seafloor reacted to the submersible and 73% to the ROV) than when they were in contact with the seafloor (2% of all reactions to the submersible and 18% to the ROV). Fishes reacted by swimming away from both vehicles rather than toward them. Consideration of these reactions can inform survey designs and selection of survey tools and can, thereby, increase the reliability of fish assemblage metrics (e.g., abundance, density, and biomass) and assessments of fish and habitat associations.
Resumo:
Marine protected areas (MPAs) represent a form of spatial management, and geospatial information on living marine resources and associated habitat is extremely important to support best management practices in a spatially discrete MPA. Benthic habitat maps provide georeferenced information on the geomorphic structure and biological cover types in the marine environment. This information supports an enhanced understanding of ecosystem function and species habitat utilization patterns. Benthic habitat maps are most useful for marine management and spatial planning purposes when they are created at a scale that is relevant to management actions. We sought to improve the resolution of existing benthic habitat maps created during a regional mapping effort in Hawai`i. Our results complemented these existing regional maps and provided more detailed, finer-scale habitat maps for a network of MPAs in West Hawai`i. The map products created during this study allow local planners and managers to extract information at a spatial scale relevant to the discrete management units, and appropriate for local marine management efforts on the Kona Coast. The resultant benthic habitat maps were integrated in a geographic information system (GIS) that also included aerial imagery, underwater video, MPA regulations, summarized ecological data and other relevant and spatially explicit information. The integration of the benthic habitat maps with additional “value added” geospatial information into a dynamic GIS provide a decision support tool with pertinent marine resource information available in one central location and support the application of a spatial approach to the management of marine resources. Further, this work can serve as a case study to demonstrate the integration of remote sensing products and GIS tools at a fine spatial scale relevant to local-level marine spatial planning and management efforts.
Resumo:
The primary objective of this project, “the Assessment of Existing Information on Atlantic Coastal Fish Habitat”, is to inform conservation planning for the Atlantic Coastal Fish Habitat Partnership (ACFHP). ACFHP is recognized as a Partnership by the National Fish Habitat Action Plan (NFHAP), whose overall mission is to protect, restore, and enhance the nation’s fish and aquatic communities through partnerships that foster fish habitat conservation. This project is a cooperative effort of NOAA/NOS Center for Coastal Monitoring and Assessment (CCMA) Biogeography Branch and ACFHP. The Assessment includes three components; 1. a representative bibliographic and assessment database, 2. a Geographical Information System (GIS) spatial framework, and 3. a summary document with description of methods, analyses of habitat assessment information, and recommendations for further work. The spatial bibliography was created by linking the bibliographic table developed in Microsoft Excel and exported to SQL Server, with the spatial framework developed in ArcGIS and exported to GoogleMaps. The bibliography is a comprehensive, searchable database of over 500 selected documents and data sources on Atlantic coastal fish species and habitats. Key information captured for each entry includes basic bibliographic data, spatial footprint (e.g. waterbody or watershed), species and habitats covered, and electronic availability. Information on habitat condition indicators, threats, and conservation recommendations are extracted from each entry and recorded in a separate linked table. The spatial framework is a functional digital map based on polygon layers of watersheds, estuarine and marine waterbodies derived from NOAA’s Coastal Assessment Framework, MMS/NOAA’s Multipurpose Marine Cadastre, and other sources, providing spatial reference for all of the documents cited in the bibliography. Together, the bibliography and assessment tables and their spatial framework provide a powerful tool to query and assess available information through a publicly available web interface. They were designed to support the development of priorities for ACFHP’s conservation efforts within a geographic area extending from Maine to Florida, and from coastal watersheds seaward to the edge of the continental shelf. The Atlantic Coastal Fish Habitat Partnership has made initial use of the Assessment of Existing Information. Though it has not yet applied the AEI in a systematic or structured manner, it expects to find further uses as the draft conservation strategic plan is refined, and as regional action plans are developed. It also provides a means to move beyond an “assessment of existing information” towards an “assessment of fish habitat”, and is being applied towards the National Fish Habitat Action Plan (NFHAP) 2010 Assessment. Beyond the scope of the current project, there may be application to broader initiatives such as Integrated Ecosystem Assessments (IEAs), Ecosystem Based Management (EBM), and Marine Spatial Planning (MSP).