18 resultados para Forecasting and replenishment (CPFR)

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research into the production ecology of chalk streams using a large artificial recirculating stream is described. Physical chemical processes including calcium and inorganic phosphate levels, and exchange of gaseous carbon dioxide in both a simple closed system and a circulating system with gravel substrate have been monitored in both light and dark conditions. Further experiments were concerned with the seasonal changes in algal growth over the gravel substrate with constant water velocities and replenishment. The algal population, composed mainly of the diatoms Achnanthes minutissima, Meridion circulare, Nitzschia fonticola and Synedra ulna reached a peak in mid May and declined rapidly during June. Concentrations of phosphate phosphorus fell as the diatoms grew but was not thought to limit growth. Silicate concentrations followed the diatom cycle closely but never fell below 0.8 mg/l Si. It is possible that one of the nutrients may have been limiting the rate of growth due to steep diffusion gradients through the algal mat. In the last summer and autumn a hard calcareous crust composed of the green alga Gongrosira incrustans and the blue green alga Homeothrix varians , developed. The channel stream is compared with the natural conditions found in chalk streams.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Foreword [pdf, < 0.1 MB] Acknowledgements PHASE 1 [pdf, 0.2 MB] Summary of the PICES/NPRB Workshop on Forecasting Climate Impacts on Future Production of Commercially Exploited Fish and Shellfish (July 19–20, 2007, Seattle, U.S.A.) Background Links to Other Programs Workshop Format Session I. Status of climate change scenarios in the PICES region Session II. What are the expected impacts of climate change on regional oceanography and what are some scenarios for these drivers for the next 10 years? Session III. Recruitment forecasting Session IV. What models are out there? How is climate linked to the model? Session V. Assumptions regarding future fishing scenarios and enhancement activities Session VI Where do we go from here? References Appendix 1.1 List of Participants PHASE 2 [pdf, 0.7 MB] Summary of the PICES/NPRB Workshop on Forecasting Climate Impacts on Future Production of Commercially Exploited Fish and Shellfish (October 30, 2007, Victoria, Canada) Background Workshop Agenda Forecast Feasibility Format of Information Modeling Approaches Coupled bio-physical models Stock assessment projection models Comparative approaches Similarities in Data Requests Opportunities for Coordination with Other PICES Groups and International Efforts BACKGROUND REPORTS PREPARED FOR THE PHASE 2 WORKSHOP Northern California Current (U.S.) groundfish production by Melissa Haltuch Changes in sablefish (Anoplopoma fimbria) recruitment in relation to oceanographic conditions by Michael J. Schirripa Northern California Current (British Columbia) Pacific cod (Gadus macrocephalus) production by Caihong Fu and Richard Beamish Northern California Current (British Columbia) sablefish (Anoplopoma fimbria) production by Richard Beamish Northern California Current (British Columbia) pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon production by Richard Beamish Northern California Current (British Columbia) ocean shrimp (Pandalus jordani) production by Caihong Fu Alaska salmon production by Anne Hollowed U.S. walleye pollock (Theragra chalcogramma) production in the eastern Bering Sea and Gulf of Alaska by Kevin Bailey and Anne Hollowed U.S. groundfish production in the eastern Bering Sea by Tom Wilderbuer U.S. crab production in the eastern Bering Sea by Gordon H. Kruse Forecasting Japanese commercially exploited species by Shin-ichi Ito, Kazuaki Tadokoro and Yasuhiro Yamanka Russian fish production in the Japan/East Sea by Yury Zuenko, Vladimir Nuzhdin and Natalia Dolganova Chum salmon (Oncorhynchus keta) production in Korea by Sukyung Kang, Suam Kim and Hyunju Seo Jack mackerel (Trachurus japonicus) production in Korea by Jae Bong Lee and Chang-Ik Zhang Chub mackerel (Scomber japonicus) production in Korea by Jae Bong Lee, Sukyung Kang, Suam Kim, Chang-Ik Zhang and Jin Yeong Kim References Appendix 2.1 List of Participants PHASE 3 [pdf, < 0.1 MB] Summary of the PICES Workshop on Linking Global Climate Model Output to (a) Trends in Commercial Species Productivity and (b) Changes in Broader Biological Communities in the World’s Oceans (May 18, 2008, Gijón, Spain) Appendix 3.1 List of Participants Appendix 3.2 Workshop Agenda (Document contains 101 pages)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Almost all extreme events lasting less than several weeks that significantly impact ecosystems are weather related. This review examines the response of estuarine systems to intense short-term perturbations caused by major weather events such as hurricanes. Current knowledge concerning these effects is limited to relatively few studies where hurricanes and storms impacted estuaries with established environmental monitoring programs. Freshwater inputs associated with these storms were found to initially result in increased primary productivity. When hydrographic conditions are favorable, bacterial consumption of organic matter produced by the phytoplankton blooms and deposited during the initial runoff event can contribute to significant oxygen deficits during subsequent warmer periods. Salinity stress and habitat destruction associated with freshwater inputs, as well as anoxia, adversely affect benthic populations and fish. In contrast, mobile invertebrate species such as shrimp, which have a short life cycle and the ability to migrate during the runoff event, initially benefit from the increased primary productivity and decreased abundance of fish predators. Events studied so far indicate that estuaries rebound in one to three years following major short-term perturbations. However, repeated storm events without sufficient recovery time may cause a fundamental shift in ecosystem structure (Scavia et al. 2002). This is a scenario consistent with the predicted increase in hurricanes for the east coast of the United States. More work on the response of individual species to these stresses is needed so management of commercial resources can be adjusted to allow sufficient recovery time for affected populations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Policy makers, natural resource managers, regulators, and the public often call on scientists to estimate the potential ecological changes caused by both natural and human-induced stresses, and to determine how those changes will impact people and the environment. To develop accurate forecasts of ecological changes we need to: 1) increase understanding of ecosystem composition, structure, and functioning, 2) expand ecosystem monitoring and apply advanced scientific information to make these complex data widely available, and 3) develop and improve forecast and interpretative tools that use a scientific basis to assess the results of management and science policy actions. (PDF contains 120 pages)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With its genesis in New England during the 1800's, the purse seine fishery for Atlantic menhaden, Brevoortia tyrannus, expanded south and by the early 1900's ranged the length of the eastern seaboard. The purse seine fishery for Gulf menhaden. B. patronus, is of relatively recent development, exploitation of the stock beginning in the late 1940's. Landings from both fisheries annually comprise 35-40% of the total U. S. fisheries landings, ranking menhaden first in terms of volume landed. Technological advances in harvesting methods, fish-spotting capabilities, and vessel designs accelerated after World War II, resulting in larger, faster, and wider-ranging carrier vessels, improved speed and efficiency of the harvest, and reduction in labor requirements. Chief products of the menhaden industry are fish meal, fish oil, and solubles, but research into new product lines is underway. Since 1955 on the Atlantic coast and 1964 on the Gulf coast, the NMFS has monitored the fisheries for biostatistical data. Annual data summaries of numbers-of-fish-at-age harvested, catch tonnage, and fishing effort of the fleet form the basis of routine stock assessments and annual catch forecasts to industry for the upcoming fishing season. After landings declined in the 1960's, the Atlantic menhaden stock has recovered through the 1970's and 1980's. Exceptional year classes of Gulf menhaden in recent years account for record landings during the 1980's.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past four decades, the state of Hawaii has developed a system of eleven Marine Life Conservation Districts (MLCDs) to conserve and replenish marine resources around the state. Initially established to provide opportunities for public interaction with the marine environment, these MLCDs vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning marine protected area (MPA) design and function using multiple discreet sampling units. NOAA/NOS/NCCOS/Center for Coastal Monitoring and Assessment’s Biogeography Team developed digital benthic habitat maps for all MLCD and adjacent habitats. These maps were used to evaluate the efficacy of existing MLCDs for biodiversity conservation and fisheries replenishment, using a spatially explicit stratified random sampling design. Coupling the distribution of habitats and species habitat affinities using GIS technology elucidates species habitat utilization patterns at scales that are commensurate with ecosystem processes and is useful in defining essential fish habitat and biologically relevant boundaries for MPAs. Analysis of benthic cover validated the a priori classification of habitat types and provided justification for using these habitat strata to conduct stratified random sampling and analyses of fish habitat utilization patterns. Results showed that the abundance and distribution of species and assemblages exhibited strong correlations with habitat types. Fish assemblages in the colonized and uncolonized hardbottom habitats were found to be most similar among all of the habitat types. Much of the macroalgae habitat sampled was macroalgae growing on hard substrate, and as a result showed similarities with the other hardbottom assemblages. The fish assemblages in the sand habitats were highly variable but distinct from the other habitat types. Management regime also played an important role in the abundance and distribution of fish assemblages. MLCDs had higher values for most fish assemblage characteristics (e.g. biomass, size, diversity) compared with adjacent fished areas and Fisheries Management Areas (FMAs) across all habitat types. In addition, apex predators and other targeted resources species were more abundant and larger in the MLCDs, illustrating the effectiveness of these closures in conserving fish populations. Habitat complexity, quality, size and level of protection from fishing were important determinates of MLCD effectiveness with respect to their associated fish assemblages. (PDF contains 217 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For fully three decades there has been an almost steady decline in Maryland's oyster production... are alarmed for its future. Reasons for decline, data supplied,importance of brood oysters and clutch replenishment. Problems of warm weather and bacterial activity as well as tongs grinding the bottom. Conflicts in canning of early season oysters and late season crops like tomatoes. (PDF contains 16 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The health of the oceans and people are inextricably linked. For many years we focused research and policy on anthropogenic impacts to oceans and coasts. Recently we have started to think about how the health of the oceans affects us. In response to the Oceans and Human Health Act of 2004, a NOAA initiative was created to explore the “One Health” of the oceans and coasts. The Center of Excellence in Oceans and Human Health at Hollings Marine Laboratory (HML) is one of three Centers dedicated to understanding the connections and forecasting changes in ocean and coastal health and human health. The Center at HML is developing new tools and approaches, including sentinel habitats and sentinel species, to evaluate linkages between ecological process and human health and wellbeing. The results provide environmental and public health managers, policy-makers and communities forecasts and assessments to improve ecosystem-based management that protects health and mitigates risks for the oceans, coasts and people.(PDF contains 4 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review the progress made in the emerging field of coastal seascape ecology, i.e. the application of landscape ecology concepts and techniques to the coastal marine environment. Since the early 1990s, the landscape ecology approach has been applied in several coastal subtidal and intertidal biogenic habitats across a range of spatial scales. Emerging evidence indicates that animals in these seascapes respond to the structure of patches and patch mosaics in different ways and at different spatial scales, yet we still know very little about the ecological significance of these relationships and the consequences of change in seascape patterning for ecosystem functioning and overall biodiversity. Ecological interactions that occur within patches and among different types of patches (or seascapes) are likely to be critically important in maintaining primary and secondary production, trophic transfer, biodiversity, coastal protection, and supporting a wealth of ecosystem goods and services. We review faunal responses to patch and seascape structure, including effects of fragmentation on 5 focal habitats: seagrass meadows, salt marshes, coral reefs, mangrove forests, and oyster reefs. Extrapolating and generalizing spatial relationships between ecological patterns and processes across scales remains a significant challenge, and we show that there are major gaps in our understanding of these relationships. Filling these gaps will be crucial for managing and responding to an inevitably changing coastal environment. We show that critical ecological thresholds exist in the structural patterning of biogenic ecosystems that, when exceeded, cause abrupt shifts in the distribution and abundance of organisms. A better understanding of faunal–seascape relationships, including the identifications of threshold effects, is urgently needed to support the development of more effective and holistic management actions in restoration, site prioritization, and forecasting the impacts of environmental change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Moving ecosystem modeling from research to applications and operations has direct management relevance and will be integral to achieving the water quality and living resource goals of the 2010 Chesapeake Bay Executive Order. Yet despite decades of ecosystem modeling efforts of linking climate to water quality, plankton and fish, ecological models are rarely taken to the operational phase. In an effort to promote operational ecosystem modeling and ecological forecasting in Chesapeake Bay, a meeting was convened on this topic at the 2010 Chesapeake Modeling Symposium (May, 10-11). These presentations show that tremendous progress has been made over the last five years toward the development of operational ecological forecasting models, and that efforts in Chesapeake Bay are leading the way nationally. Ecological forecasts predict the impacts of chemical, biological, and physical changes on ecosystems, ecosystem components, and people. They have great potential to educate and inform not only ecosystem management, but also the outlook and opinion of the general public, for whom we manage coastal ecosystems. In the context of the Chesapeake Bay Executive Order, ecological forecasting can be used to identify favorable restoration sites, predict which sites and species will be viable under various climate scenarios, and predict the impact of a restoration project on water quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined movement patterns of sportfish that were tagged in the northern Indian River Lagoon, Florida, between 1990 and 1999 to assess the degree of fish exchange between an estuarine no-take zone (NTZ) and surrounding waters. The tagged f ish were from seven species: red drum (Sciaenops ocellatus); black drum (Pogonias cromis); sheepshead (Archosargus probatocephalus); common snook (Centropomus undecimalis); spotted seatrout (Cynoscion nebulosus); bull shark (Carcharhinus leucas); and crevalle jack (Caranx hippos). A total of 403 tagged fish were recaptured during the study period, including 65 individuals that emigrated from the NTZ and 16 individuals that immigrated into the NTZ from surrounding waters of the lagoon. Migration distances between the original tagging location and the sites where emigrating fish were recaptured were from 0 to 150 km, and these migration distances appeared to be influenced by the proximity of the NTZ to spawning areas or other habitats that are important to specific life-history stages of individual species. Fish that immigrated into the NTZ moved distances ranging from approximately 10 to 75 km. Recapture rates for sportfish species that migrated across the NTZ boundary suggested that more individuals may move into the protected habitats than move out. These data demonstrated that although this estuarine no-take reserve can protect species from fishing, it may also serve to extract exploitable individuals from surrounding fisheries; therefore, if the no-take reserve does function to replenish surrounding fisheries, then increased egg production and larval export may be more important mechanisms of replenishment than the spillover of excess adults from the reserve into fishable areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): The 1988 summer drought over much of the United States is described in terms of hemispheric mid-tropospheric flow patterns, temperature and precipitation anomalies, and sea surface temperature patterns. This drought was similar to earlier Great Plains droughts, although spatially more extensive than most. Three attempts to predict this drought from antecedent spring were moderately successful, though no one anticipated its severity and extent. ... A modified barotropic model iterating from a mean summer estimate of seasonal forcing from the May mid-tropospheric height pattern was reasonably successful in forecasting the drought. Sea surface temperature indications show that cold water (La Niña) along the equator subsequent to the 1987 El Niño, while contributory, cannot be considered a principal cause of the drought, since earlier cold water episodes did not produce drought, and other drought episodes occurred in the absence of cold equatorial waters.