6 resultados para Fluid loss control
em Aquatic Commons
Resumo:
The processes which control the growth, composition, succession and loss from suspension of phytoplankton algae are briefly reviewed, with special reference to function in eutrophic reservoir systems. The ecology of larger algal biomasses supported by high nutrient loading rates are more likely to be subject to physical (wash-out, underwater light penetration, thermal stability and mixing) than to chemical constraints. Sudden changes in the interactions between physical factors temporarily impair the growth of dominant algal species, and advance the succession. Certain algae may be cropped heavily, but selectively, by zooplankton feeding, but they are rarely the species which cause problems in waterworks practice. Grazing, however, does influence succession. A deeper understanding of the operation of loss control mechanism is urgently required. Potentially, manipulation of the physical environment provides an important means of alleviating day-to-day algal problems in eutrophic reservoirs; in terms of cost effectiveness these may prove to be more attractive than reducing nutrient loads at source.
Resumo:
Florida’s large number of shallow lakes, warm climate and long growing season have contributed to the development of excessive growths of aquatic macrophytes that have seriously interfered with many water use activities. The introduction of exotic aquatic macrophyte species such as hydrilla ( Hydrilla verticillata ) have added significantly to aquatic plant problems in Florida lakes. The use of grass carp ( Ctenopharyngodon idella ) can be an effective and economical control for aquatic vegetation such as hydrilla. Early stocking rates (24 to 74 grass carp per hectare of lake area) resulted in grass carp consumption rates that vastly exceeded the growth rates of the aquatic plants and often resulted in the total loss of all submersed vegetation. This study looked at 38 Florida lakes that had been stocked with grass carp for 3 to 10 years with stocking rates ranging from < 1 to 59 grass carp per hectare of lake and 1 to 207 grass carp per hectare of vegetation to determine the long term effects of grass carp on aquatic macrophyte communities. The median PAC (percent area coverage) value of aquatic macrophytes for the study lakes after they were stocked with grass carp was 14% and the median PVI (percent volume infested) value of aquatic macrophytes was 2%. Only lakes stocked with less than 25 to 30 fish per hectare of vegetation tended to have higher than median PAC and PVI values. When grass carp are stocked at levels of > 25 to 30 fish per hectare of vegetation the complete control of aquatic vegetation can be achieved, with the exception of a few species of plants that grass carp have extreme difficulty consuming. If the management goal for a lake is to control some of the problem aquatic plants while maintaining a small population of predominately unpalatable aquatic plants, grass carp can be stocked at approximately 25 to 30 fish per hectare of vegetation.
Resumo:
Wild taro (Colocasia esculenta (L.) Schott), is an exotic, emergent perennial that has established in many shallow-water wetlands throughout the southern United States. Although wild taro is a cultivated crop in many tropical and subtropical areas of the world, its invasion in riverine and lacustrine wetlands in the U.S. has resulted in the loss of habitat for native plant species. Once established, wild taro forms dense, monotypic stands that reduce the diversity of native vegetation, as has occurred in Louisiana, Florida, and Texas (Akridge and Fonteyn 1981, Simberloff et al. 1997). Akridge and Fonteyn (1981) reported that although wild taro is considered naturalized in south-central Texas, its present dominance along the San Marcos River has altered the native vegetational structure and dynamics of this river system. The objective of this study was to evaluate the efficacy of four aquatic herbicides for control of wild taro.
Resumo:
The estimated potential of Nigerian fish resources is 1,830,994 tonnes(t) whereas the demand based on per capita consumption of 12.0kg and a population of 88.5 million is 1.085 million tonnes. Supply is presently less than 500,000 tons. The gap between demand and supply have to be met through improved utilization and increased availability of fish and fishery products. The role of fish in nutrition is recognized, since it supplies a good balance of protein, vitamins and minerals and a relatively low caloric content. This paper appraises the consumption and utilisation pattern of fish in Nigeria, the spoilage of fish and prevention of losses as a means of increasing the availability of fish for human consumption and consequent control of aggravated animal protein deficiency - induced malnutrition. The paper further highlights the point that without increased landings, increased supply of fish can be achieved through reduction of postharvest loss of what is presently caught. The use of newly designed smoke - drying equipment to achieve such goal is highlighted. The paper also emphasises the need to put into human food chain those non-conventional fishery resources and by-catch of shrimp and demersal trawl fishes by conversion into high value protein products like fish cakes, fish pies and salted dried cakes
Resumo:
One of the supposed effects of the observed ozone depletion is the increase of solar UV-B irradiation at the seasurface. This will cause an impact on certain compartments of marine ecosystems. Especially, sensitive developmental stages of pelagic fish embryos might be affected. Embryos of dab (Limanda limanda) and plaice (Pleuronectes plalessa) were experimentally exposed 10 different amounts of UVB irradiation in a sunshine simulator. This programmable device allows the dosage of realistic solar irradiation in quality and guantity. Experiments were carried out in March 1995 and February 1996. Either artificially inserninated and reared emhryos of dab and plaice or embryos caught in the German Bight were exposed to simulated solar irradiation. The 1995 experiments served to identify the effective irradiation dosages. For the 1996 experiments irradiation applied was much lower, being dose to realistic valucs expected over the North Sea as a consequence of ozone depletion. The following end points were studied: 1. Mortality, 2. sublethal morphological effects (malformations), 3. DNA damage, 4. changes in buoyancy of embryos measured as changes in osmolarity of the perivitelline fluid. Conditions for the simulation of daylight were a c1oudless sky with a solar zenith distance of 34 % (air mass 1.2). The adopted ozone depletion was 40 % corresponding to 180 DU (Dobson Units) instead of 300 DU. In the 1995 experiments time and dosage dependent influenccs on mortality and buoyancy of embryos of dab and plaice were found. Even in those embryos which were protected from the UV-B spectral range a loss of buoyancy was registered after 12 hours in the simulator. No diffcrences in DNA integrity as determined by DNA unwinding of exposed and control embryos were found. Also with lower amounts of irradiation in the 1996 experiments dosage dependent acute mortality, malformations, and impact on the buoyancy of the emhryos was registered. Sublethal effects occurred as well in embryos protected against UV-B in the exposure chambers, but were not found in the dark controls. The impact of low dosages of UV-B on the buoyancy of pelagic fish embryos might indicate an important ecological threat and deserves further studies.
Resumo:
Weeds are plants growing in environments where they are undesirable. Aquatic weeds in fresh waters are nuisance or noxious plants growing in association with water in lakes, impoundment, rivers, canals, wetlands, etc. Some waterweeds cause very big financial loss through the socio economic, environmental and ecological impacts they inflict; and through the effort and expense required for their control. Other waterweeds are simply nuisance plants that cause minimal impacts. This paper is intended to introduce aquatic weeds outlining their characteristics, the main socio-economic and environmental impacts associated with them, and the control strategies often applied for their management.