59 resultados para First Nations

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

pdf contains 60 pages

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Executive Summary: Information found in this report covers the years 1986 through 2005. Mussel Watch began monitoring a suite of trace metals and organic contaminants such as DDT, PCBs and PAHs. Through time additional chemicals were added, and today approximately 140 analytes are monitored. The Mussel Watch Program is the longest running estuarine and coastal pollutant monitoring effort conducted in the United States that is national in scope each year. Hundreds of scientific journal articles and technical reports based on Mussel Watch data have been written; however, this report is the first that presents local, regional and national findings across all years in a Quick Reference format, suitable for use by policy makers, scientists, resource managers and the general public. Pollution often starts at the local scale where high concentrations point to a specific source of contamination, yet some contaminants such as PCBs are atmospherically transported across regional and national scales, resulting in contamination far from their origin. Findings presented here showed few national trends for trace metals and decreasing trends for most organic contaminants; however, a wide variety of trends, both increasing and decreasing, emerge at regional and local levels. For most organic contaminants, trends have resulted from state and federal regulation. The highest concentrations for both metal and organic contaminants are found near urban and industrial areas. In addition to monitoring throughout the nation’s coastal shores and Great Lakes, Mussel Watch samples are stored in a specimen bank so that trends can be determined retrospectively for new and emerging contaminants of concern. For example, there is heightened awareness of a group of flame retardants that are finding their way into the marine environment. These compounds, known as polybrominated diphenyl ethers (PBDEs), are now being studied using historic samples from the specimen bank and current samples to determine their spatial distribution. We will continue to use this kind of investigation to assess new contaminant threats. We hope you find this document to be valuable, and that you continue to look towards the Mussel Watch Program for information on the condition of your coastal waters. (PDF contains 118 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technological innovation has made it possible to grow marine finfish in the coastal and open ocean. Along with this opportunity comes environmental risk. As a federal agency charged with stewardship of the nation’s marine resources, the National Oceanic and Atmospheric Administration (NOAA) requires tools to evaluate the benefits and risks that aquaculture poses in the marine environment, to implement policies and regulations which safeguard our marine and coastal ecosystems, and to inform production designs and operational procedures compatible with marine stewardship. There is an opportunity to apply the best available science and globally proven best management practices to regulate and guide a sustainable United States (U.S.) marine finfish farming aquaculture industry. There are strong economic incentives to develop this industry, and doing so in an environmentally responsible way is possible if stakeholders, the public and regulatory agencies have a clear understanding of the relative risks to the environment and the feasible solutions to minimize, manage or eliminate those risks. This report spans many of the environmental challenges that marine finfish aquaculture faces. We believe that it will serve as a useful tool to those interested in and responsible for the industry and safeguarding the health, productivity and resilience of our marine ecosystems. This report aims to provide a comprehensive review of some predominant environmental risks that marine fish cage culture aquaculture, as it is currently conducted, poses in the marine environment and designs and practices now in use to address these environmental risks in the U.S. and elsewhere. Today’s finfish aquaculture industry has learned, adapted and improved to lessen or eliminate impacts to the marine habitats in which it operates. What progress has been made? What has been learned? How have practices changed and what are the results in terms of water quality, benthic, and other environmental effects? To answer these questions we conducted a critical review of the large body of scientific work published since 2000 on the environmental impacts of marine finfish aquaculture around the world. Our report includes results, findings and recommendations from over 420 papers, primarily from peer-reviewed professional journals. This report provides a broad overview of the twenty-first century marine finfish aquaculture industry, with a targeted focus on potential impacts to water quality, sediment chemistry, benthic communities, marine life and sensitive habitats. Other environmental issues including fish health, genetic issues, and feed formulation were beyond the scope of this report and are being addressed in other initiatives and reports. Also absent is detailed information about complex computer simulations that are used to model discharge, assimilation and accumulation of nutrient waste from farms. These tools are instrumental for siting and managing farms, and a comparative analysis of these models is underway by NOAA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small-scale and artisanal fisheries contribute about two-thirds of the global fish production destined for direct human consumption. They also accommodate over 90 per cent of those who make their living from fisheries. Women comprise at least half the workforce in small-scale fisheries. Despite the important contributions made by small-scale fisheries to poverty eradication and food security, small-scale fishers and fishworkers continue to be marginalized at different levels. It is in this context that the Committee on Fisheries (COFI) of the Food and Agriculture Organization of the United Nations (FAO) has developed the Voluntary Guidelines for Securing Sustainable Small-scale Fisheries in the Context of Food Security and Poverty Eradication (SSF Guidelines).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The state of PICES science – 2000 [pp. 1-2] [pdf, 0.6 Mb] The state of the western North Pacific in the first half of 2000 [pp. 3-5] [pdf, 0.7 Mb] The status of the Bering Sea: January – August 2000 [pp. 6-7] [pdf, 0.3 Mb] The state of the eastern North Pacific since spring 2000 [pp. 8-9] [pdf, 0.4 Mb] Makoto Kashiwai [pp. 10-14] [pdf, 0.9 Mb] Alkalinity measurement quality improves for PICES nations [pp. 15-16] [pdf, 0.4 Mb] Dr. Timothy R. Parsons Awarded 2001 Japan Prize [p. 17] [pdf, 0.2 Mb] Highlights of the PICES Nineth Annual Meeting [pp. 18-19] [pdf, 0.4 Mb] Tangible outline of the whole elephant (Results of ecosystem studies of biological resources in the far-eastern seas in 1990s) [pp. 20-24] [pdf, 0.7 Mb] The Oshoro Maru: A short history of Hokkaido University's workhorse in the North Pacific [pp. 25-28] [pdf, 0.4 Mb] Bering Sea and North Pacific Ocean Theme Page [pp. 29-30] [pdf, 0.3 Mb] PICES IX Japan/East Sea cruise [pp. 31-34] [pdf, 1.1 Mb] 35 PICES Wooster Award [p. 35] [pdf, 0.2 Mb] PICES Intern Program [p. 35] [pdf, 0.2 Mb] Obituary - Prof. Michael M. Mulin [p. 36] [pdf, 0.2 Mb]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction [pdf, 0.17 MB] Warren S. Wooster [pdf, 0.12 MB] PICES - the first decade, and beyond Paul H. LeBlond [pdf, 0.03 MB] The Physical Oceanography and Climate Committee: The first decade D.E. Harrison and Neville Smith [pdf, 0.04 MB] Ocean observing systems and prediction - the next ten years Tsutomu Ikeda and Patricia A. Wheeler [pdf, 0.85 MB] Ocean impacts from the bottom of the food web to the top: Biological Oceanography Committee (BIO) retrospective Timothy R. Parsons [pdf, 0.2 MB] Future needs for biological oceanographic studies in the Pacific Ocean Douglas E. Hay, Richard J. Beamish, George W. Boehlert, Vladimir I. Radchenko, Qi-Sheng Tang, Tokio Wada, Daniel W. Ware and Chang-Ik Zhang [pdf, 0.2 MB] Ten years FIS in PICES: An introspective, retrospective, critical and constructive review of fishery science in PICES Richard F. Addison, John E. Stein and Alexander V. Tkalin [pdf, 0.12 MB] Marine Environmental Committee in review Robie W. Macdonald, Brian Morton, Richard F. Addison and Sophia C. Johannessen [pdf, 1.89 MB] Marine environmental contaminant issues in the North Pacific: What are the dangers and how do we identify them? R. Ian Perry, Anne B. Hollowed and Takashige Sugimoto [pdf, 0.36 MB] The PICES Climate Change and Carrying Capacity Program: Why, how, and what next? List of acronyms [pdf, 0.07 MB] (Document contains 108 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Channel Islands—sometimes called the Galapagos of North America—are known for their great beauty, rich biodiversity, cultural heritage, and recreational opportunities. In 1980, in recognition of the islands’ importance, the United States Congress established a national park encompassing 5 of California’s Channel Islands (Santa Barbara, Anacapa, Santa Cruz, Santa Rosa, and San Miguel Islands) and waters within 1 nautical mile of the islands. In the same year, Congress declared a national marine sanctuary around each of these islands, including waters up to 6 nautical miles offshore. Approximately 60,000 people visit the Channel Islands each year for aquatic recreation such as fishing, sailing, kayaking, wildlife watching, surfing, and diving. Another 30,000 people visit the islands for hiking, camping, and sightseeing. Dozens of commercial fishing boats based in Santa Barbara, Ventura, Oxnard, and other ports go to the Channel Islands to catch squid, spiny lobster, sea urchin, rockfish, crab, sheephead, flatfish, and sea cucumber, among other species. In the past few decades, advances in fishing technology and the rising number of fishermen, in conjunction with changing ocean conditions and diseases, have contributed to declines in some marine fishes and invertebrates at the Channel Islands. In 1998, citizens from Santa Barbara and Ventura proposed establishment of no-take marine reserves at the Channel Islands, beginning a 4-year process of public meetings, discussions, and scientific analyses. In 2003, the California Fish and Game Commission designated a network of marine protected areas (MPAs) in state waters around the northern Channel Islands. In 2006 and 2007, the National Oceanic and Atmospheric Administration (NOAA) extended the MPAs into the national marine sanctuary’s deeper, federal waters. To determine if the MPAs are protecting marine species and habitats, scientists are monitoring ecological changes. They are studying changes in habitats; abundance and size of species of interest; the ocean food web and ecosystem; and movement of fish and invertebrates from MPAs to surrounding waters. Additionally, scientists are monitoring human activities such as commercial and recreational fisheries, and compliance with MPA regulations. This booklet describes some results from the first 5 years of monitoring the Channel Islands MPAs. Although 5 years is not long enough to determine if the MPAs will accomplish all of their goals, this booklet offers a glimpse of the changes that are beginning to take place and illustrates the types of information that will eventually be used to assess the MPAs’ effectiveness. (PDF contains 24 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(1 poster)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document represents a pilot effort to map social change in the coastal United States—a social atlas characterizing changing population, demographic, housing, and economic attributes. This pilot effort focuses on coastal North Carolina. The impetus for this project came from numerous discussions about the usefulness and need for a graphic representation of social change information for U.S. coastal regions. Although the information presented here will be of interest to a broad segment of the coastal community and general public, the intended target audience is coastal natural resource management professionals, Sea Grant Extension staff, urban and regional land-use planners, environmental educators, and other allied constituents interested in the social aspects of how the nation’s coasts are changing. This document has three sections. The first section provides background information about the project. The second section features descriptions of social indicators and depictions of social indicator data for 1970, 1980, 1990, and 2000, and changes from 1970 to 2000 for all North Carolina coastal counties. The third section contains three case studies describing changes in select social attributes for subsets of counties. (PDF contains 67 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the report of the “DoF/NACA-STREAM/FAO Workshop on Livelihoods Approaches and Analysis” that was conducted in Yangon, Union of Myanmar from 11-15 May 2004. The purpose of the workshop was to develop and document mechanisms for training in livelihoods approaches and analysis, and to build national capacity to conduct livelihoods studies. The workshop in Yangon was the first STREAM event in Myanmar, with colleagues coming to participate from Yangon and many Divisions and States throughout the country. The workshop in Yangon was the fourth in a series, the first of which was held in Iloilo City, Philippines, in November 2003, the second in Ranchi, India, in February 2004, and the third in Vientiane, Lao PDR in March 2004. A subsequent workshop will take place in Yunnan, China. The objectives of the workshop were to: Understand issues of interest to people whose livelihoods include aquatic resources management, especially those with limited resources Build “(national) livelihoods teams” to do livelihoods analyses and training, and share their experiences with communities and other stakeholders Share understandings of livelihoods approaches and analysis using participatory methods Review current NACA-STREAM livelihoods analysis documentation, adapt and supplement, towards the drafting of a Guide for Livelihoods Analysis Experience the use of participatory tools for livelihoods analysis Plan activities for carrying out livelihoods analyses, and Consider how to build capacity in monitoring and evaluation (M&E) and “significant change”. (Pdf contains 56 pages).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Executive Summary: The marine environment plays a critical role in the amount of carbon dioxide (CO2) that remains within Earth’s atmosphere, but has not received as much attention as the terrestrial environment when it comes to climate change discussions, programs, and plans for action. It is now apparent that the oceans have begun to reach a state of CO2 saturation, no longer maintaining the “steady-state” carbon cycle that existed prior to the Industrial Revolution. The increasing amount of CO2 present within the oceans and the atmosphere has an effect on climate and a cascading effect on the marine environment. Potential physical effects of climate change within the marine environment, including ocean acidification, changes in wind and upwelling regimes, increasing global sea surface temperatures, and sea level rise, can lead to dramatic, fundamental changes within marine and coastal ecosystems. Altered ecosystems can result in changing coastal economies through a reduction in marine ecosystem services such as commercial fish stocks and coastal tourism. Local impacts from climate change should be a front line issue for natural resource managers, but they often feel too overwhelmed by the magnitude of this issue to begin to take action. They may not feel they have the time, funding, or staff to take on a challenge as large as climate change and continue to not act as a result. Already, natural resource managers work to balance the needs of humans and the economy with ecosystem biodiversity and resilience. Responsible decisions are made each day that consider a wide variety of stakeholders, including community members, agencies, non-profit organizations, and business/industry. The issue of climate change must be approached as a collaborative effort, one that natural resource managers can facilitate by balancing human demands with healthy ecosystem function through research and monitoring, education and outreach, and policy reform. The Scientific Expert Group on Climate Change in their 2007 report titled, “Confronting Climate Change: Avoiding the Unmanageable and Managing the Unavoidable” charged governments around the world with developing strategies to “adapt to ongoing and future changes in climate change by integrating the implications of climate change into resource management and infrastructure development”. Resource managers must make future management decisions within an uncertain and changing climate based on both physical and biological ecosystem response to climate change and human perception of and response to the issue. Climate change is the biggest threat facing any protected area today and resource managers must lead the charge in addressing this threat. (PDF has 59 pages.)