2 resultados para Finite Frames
em Aquatic Commons
Resumo:
Introduction: The National Oceanic and Atmospheric Administration’s Biogeography Branch has conducted surveys of reef fish in the Caribbean since 1999. Surveys were initially undertaken to identify essential fish habitat, but later were used to characterize and monitor reef fish populations and benthic communities over time. The Branch’s goals are to develop knowledge and products on the distribution and ecology of living marine resources and provide resource managers, scientists and the public with an improved ecosystem basis for making decisions. The Biogeography Branch monitors reef fishes and benthic communities in three study areas: (1) St. John, USVI, (2) Buck Island, St. Croix, USVI, and (3) La Parguera, Puerto Rico. In addition, the Branch has characterized the reef fish and benthic communities in the Flower Garden Banks National Marine Sanctuary, Gray’s Reef National Marine Sanctuary and around the island of Vieques, Puerto Rico. Reef fish data are collected using a stratified random sampling design and stringent measurement protocols. Over time, the sampling design has changed in order to meet different management objectives (i.e. identification of essential fish habitat vs. monitoring), but the designs have always remained: • Probabilistic – to allow inferences to a larger targeted population, • Objective – to satisfy management objectives, and • Stratified – to reduce sampling costs and obtain population estimates for strata. There are two aspects of the sampling design which are now under consideration and are the focus of this report: first, the application of a sample frame, identified as a set of points or grid elements from which a sample is selected; and second, the application of subsampling in a two-stage sampling design. To evaluate these considerations, the pros and cons of implementing a sampling frame and subsampling are discussed. Particular attention is paid to the impacts of each design on accuracy (bias), feasibility and sampling cost (precision). Further, this report presents an analysis of data to determine the optimal number of subsamples to collect if subsampling were used. (PDF contains 19 pages)
Resumo:
We present a growth analysis model that combines large amounts of environmental data with limited amounts of biological data and apply it to Corbicula japonica. The model uses the maximum-likelihood method with the Akaike information criterion, which provides an objective criterion for model selection. An adequate distribution for describing a single cohort is selected from available probability density functions, which are expressed by location and scale parameters. Daily relative increase rates of the location parameter are expressed by a multivariate logistic function with environmental factors for each day and categorical variables indicating animal ages as independent variables. Daily relative increase rates of the scale parameter are expressed by an equation describing the relationship with the daily relative increase rate of the location parameter. Corbicula japonica grows to a modal shell length of 0.7 mm during the first year in Lake Abashiri. Compared with the attain-able maximum size of about 30 mm, the growth of juveniles is extremely slow because their growth is less susceptible to environmental factors until the second winter. The extremely slow growth in Lake Abashiri could be a geographical genetic variation within C. japonica.