78 resultados para Final do Antigo Regime
em Aquatic Commons
Resumo:
During a 1995 aerial video survey of the coastline of Johnstone Strait, an unusual shoreline feature was noted and termed “clam terraces” (inset) because of the terrace-type morphology and the apparent association with high clam productivity on the sandflats. Typical alongshore lengths of the terrace ridges are 20-50m, and across-shore widths are typically 20-40m. An area with an especially high density of clam terraces was noted in the Broughton Archipelago, between Broughton and Gilford Islands of southeastern Queen Charlotte Strait. Clam terraces in this area were inventoried from the aerial video imagery to quantify their distribution. The terraces accounted for over 14 km of shoreline and 365 clam terraces were documented. A three-day field survey by a coastal geomorphologist, archeologist and marine biologist was conducted to document the features and determine their origin. Nine clam terraces were surveyed. The field observations confirmed that: the ridges are comprised of boulder/cobblesized material, ridge crests are typically in the range of 1-1.5m above chart datum, sandflats are comprised almost entirely of shell fragments (barnacles and clams) and sandflats have very high shellfish production. There are an abundance of shell middens in the area (over 175) suggesting that the shellfish associated with the terraces were an important food source of aboriginal peoples. The origin of the ridges is unknown; they appear to be a relict feature in that they are not actively being modified by present-day processes. The ridges may be a relict sea-ice feature, although the mechanics of ridge formation is uncertain. Sand accumulates behind the ridge because the supply rate of the shell fragments exceeds the dispersal rate in these low energy environments. The high density areas of clam terraces correspond to high density areas of shell middens, and it is probable that the clam terraces were subjected to some degree of modification by aboriginal shellfish gatherers over the thousands of years of occupation in the region. (Document contains 39 pages)
Resumo:
Diking and holding water on salt marshes ("impounding" the marsh) is a management technique used on Merritt Island National Wildlife Refuge (MINWR) and elsewhere in the Southeast to: a) prevent the reproduction of saltmarsh mosquitos, and b) attract wintertering waterfowl and other marsh, shore, and wading birds. Because of concern that diking and holding water may interfere with the production of estuarine fish and shellfish, impoundment managers are being asked to consider altering management protocol to reduce or eliminate any such negative influence. How to change protocol and preserve effective mosquito control and wildlife management is a decision of great complexity because: a) the relationships between estuarine organisms and the fringing salt marshes at the land-water interface are complex, and b) impounded marshes are currently good habitat for a variety of species of fish and wildlife. Most data collection by scientists and managers in the area has not been focused on this particular problem. Furthermore, collection of needed data may not be possible before changes in protocol are demanded. Therefore, the purpose of this document is two-fold: 1) to suggest management alternatives, given existing information, and 2) to help identify research needs that have a high probability of leading to improved simultaneous management of mosquitos, waterfowl, other wildlife, freshwater fish, and estuarine fish and shellfish on the marshland of the Merritt Island National Wildlife Refuge. (92 page document)
Resumo:
EXECUTIVE SUMMARY 1. DECADAL-SCALE CLIMATE EVENTS 1.1 Introduction 1.2 Basin-scale Patterns 1.3 Long Time Series in the North Pacific 1.4 Decadal Climate Variability in Ecological Regions of the North Pacific 1.5 Mechanisms 1.6 References 2. COHERENT REGIONAL RESPONSES 2.1 Introduction 2.2 Central North Pacific (CNP) 2.3 California Current System (CCS) 2.4 Gulf of Alaska (GOA) 2.5 Bering Sea and Aleutian Islands 2.6 Western North Pacific (WNP) 2.7 Coherence in Regional Responses to the 1998 Regime Shift 2.8 Climate Indicators for Detecting Regime Shifts 2.9 References 3. IMPLICATIONS FOR THE MANAGEMENT OF MARINE RESOURCES 3.1 Introduction 3.2 Response Time of Biota to Regime Shifts 3.3 Response Time of Management to Regime Shifts 3.4 Provision of Stock Assessment Advice 3.5 Decision Rules 3.6 References 4. SUGGESTED LITERATURE 4.1 Climate Regimes 4.2 Impacts on Lower Trophic Levels 4.3 Impacts on Fish and Higher Trophic Levels 4.4 Impacts on Ecosystems and Possible Mechanisms 4.5 Regimes and Fisheries Management APPENDIX 1: RECENT ECOSYSTEM CHANGES IN THE CENTRAL NORTH PACIFIC A1.1 Introduction A1.2 Physical Oceanography A1.3 Lower Trophic Levels A1.4 Invertebrates A1.5 Fishes A1.6 References APPENDIX 2: RECENT ECOSYSTEM CHANGES IN THE CALIFORNIA CURRENT SYSTEM A2.1 Introduction A2.2 Physical Oceanography A2.3 Lower Trophic Levels A2.4 Invertebrates A2.5 Fishes A2.6 References APPENDIX 3: RECENT ECOSYSTEM CHANGES IN THE GULF OF ALASKA A3.1 Introduction A3.2 Physical Oceanography A3.3 Lower Trophic Levels A3.4 Invertebrates A3.5 Fishes A3.6 Higher Trophic Levels A3.7 Coherence in Gulf of Alaska Fish A3.8 Combined Standardized Indices of Recruitment and Survival Rate A3.9 References APPENDIX 4: RECENT ECOSYSTEM CHANGES IN THE BERING SEA AND ALEUTIAN ISLANDS A4.1 Introduction A4.2 Bering Sea Environmental Variables and Physical Oceanography A4.3 Bering Sea Lower Trophic Levels A4.4 Bering Sea Invertebrates A4.5 Bering Sea Fishes A4.6 Bering Sea Higher Trophic Levels A4.7 Coherence in Bering Sea Fish Responses A4.8 Combined Standardized Indices of Bering Fish Recruitment and Survival Rate A4.9 Aleutian Islands A4.10 References APPENDIX 5: RECENT ECOSYSTEM CHANGES IN THE WESTERN NORTH PACIFIC A5.1 Introduction A5.2 Sea of Okhotsk A5.3 Tsushima Current Region and Kuroshio/Oyashio Current Region A5.4 Bohai Sea, Yellow Sea, and East China Sea A5.5 References (168 page document)
Resumo:
(287 page document)
Resumo:
A study on the reproductive biology of Amblema neislerii, Elliptoideus sloatianus, Lampsilis subangulata, Medionidus penicillatus, and Pleurobema pyriforme was conducted from May 1995 to May 1997. The objectives of this study were as follows: 1) determine period of gravidity for each of the five mussel species, 2) determine host fish via laboratory experiments, 3) test whether unionid glochidia will transform on a nonidingenous fish, and 4) describe the glochidial morphology for each of the five mussel species using a scanning electron microscope. Amblema neislerii are tachytictic breeders and were found with mature glochidia in May. Elliptoideus sloatianus are tachytictic breeders and were found with mature glochidia from late February to early April. Lampsilis subangulata are bradytictic breeders and were found with mature glochidia from December to August. Superconglutinates were released by L. subangulata from late May to early July. Medionidus penicillatus are bradytictic breeders and were found with mature glochidia in November and February to April. Pleurobema pyriforme are tachytictic breeders and were found with mature glochidia from March to July. The following fish species served as hosts for A. neislerii: Notropis texanus, Lepomis macrochirus, L. microlophus, Micropterus salmoides, and Percina nigrofasciata. The following fish species served as hosts for E. sloatianus: Gambusia holbrooki, Poecilia reticulata, and P. nigrofasciata. The following fish species served as hosts for L. subangulata: G. holbrooki, P. reticulata, L. macrochirus, Micropterus punctulatus, and M. salmoides. The following fish species served as hosts for M. penicillatus: G. holbrooki, P. reticulata, Etheostoma edwini, and P. nigrofasciata. The following fish species served as hosts for P. pyriforme: Pteronotropis hypselopterus, G. holbrooki, and P. reticulata. Poecilia reticulata, a nonindigenous fish, served as a host for E. sloatianus, L. subangulata, M. penicillatus, and P. pyriforme. (76 page document)
Resumo:
This report published as Information Circular No. 21, together with the interim report published in 1957 as Information Circular No. 10, Florida Geological Survey, illustrates as completely as possible the situation that now exists among the freely flowing wells of the State. (PDF contains 40 pages.)
Resumo:
Rice cultivation at any level in the Sacramento–San Joaquin Delta (existing or expanded) compels the need to quantify surface and subsurface loads of dissolved organic carbon (DOC), disinfection byproduct precursors (DBPPs) and nitrogen. This information can be used to develop Best Management Practices (BMPs) to reduce export of these constituents in order to improve drinking water quality. Although rice cultivation in the Delta is relatively limited, several factors outside of this research could contribute to increased rice acreage in the Delta: • Recently developed rice varieties seem more suitable for the Delta climate than earlier varieties which required warmer conditions; • Previous economic analyses (Appendix A.10) suggest rice is more profitable than corn, a dominant land use in the Delta; • Recent studies on wetlands at Twitchell Island suggest rice production can help mitigate oxidative subsidence (Miller et al. 2000); • The different oxidative states that result from flooding in rice as compared to those found in crops that require drained soils may help control crop specific weeds and nematodes when rice is incorporated into a crop rotation; and • Providing flooded conditions during a greater part of the year than other crops may benefit water birds. ... (PDF contains 249 pages)
Resumo:
To be in compliance with the Endangered Species Act and the Marine Mammal Protection Act, the United States Department of the Navy is required to assess the potential environmental impacts of conducting at-sea training operations on sea turtles and marine mammals. Limited recent and area-specific density data of sea turtles and dolphins exist for many of the Navy’s operations areas (OPAREAs), including the Marine Corps Air Station (MCAS) Cherry Point OPAREA, which encompasses portions of Core and Pamlico Sounds, North Carolina. Aerial surveys were conducted to document the seasonal distribution and estimated density of sea turtles and dolphins within Core Sound and portions of Pamlico Sound, and coastal waters extending one mile offshore. Sea Surface Temperature (SST) data for each survey were extracted from 1.4 km/pixel resolution Advanced Very High Resolution Radiometer remote images. A total of 92 turtles and 1,625 dolphins were sighted during 41 aerial surveys, conducted from July 2004 to April 2006. In the spring (March – May; 7.9°C to 21.7°C mean SST), the majority of turtles sighted were along the coast, mainly from the northern Core Banks northward to Cape Hatteras. By the summer (June – Aug.; 25.2°C to 30.8°C mean SST), turtles were fairly evenly dispersed along the entire survey range of the coast and Pamlico Sound, with only a few sightings in Core Sound. In the autumn (Sept. – Nov.; 9.6°C to 29.6°C mean SST), the majority of turtles sighted were along the coast and in eastern Pamlico Sound; however, fewer turtles were observed along the coast than in the summer. No turtles were seen during the winter surveys (Dec. – Feb.; 7.6°C to 11.2°C mean SST). The estimated mean surface density of turtles was highest along the coast in the summer of 2005 (0.615 turtles/km², SE = 0.220). In Core and Pamlico Sounds the highest mean surface density occurred during the autumn of 2005 (0.016 turtles/km², SE = 0.009). The mean seasonal abundance estimates were always highest in the coastal region, except in the winter when turtles were not sighted in either region. For Pamlico Sound, surface densities were always greater in the eastern than western section. The range of mean temperatures at which turtles were sighted was 9.68°C to 30.82°C. The majority of turtles sighted were within water ≥ 11°C. Dolphins were observed within estuarine waters and along the coast year-round; however, there were some general seasonal movements. In particular, during the summer sightings decreased along the coast and dolphins were distributed throughout Core and Pamlico Sounds, while in the winter the majority of dolphins were located along the coast and in southeastern Pamlico Sound. Although relative numbers changed seasonally between these areas, the estimated mean surface density of dolphins was highest along the coast in the spring of 2006 (9.564 dolphins/km², SE = 5.571). In Core and Pamlico Sounds the highest mean surface density occurred during the autumn of 2004 (0.192 dolphins/km², SE = 0.066). The estimated mean surface density of dolphins was lowest along the coast in the summer of 2004 (0.461 dolphins/km², SE = 0.294). The estimated mean surface density of dolphins was lowest in Core and Pamlico Sounds in the summer of 2005 (0.024 dolphins/km², SE = 0.011). In Pamlico Sound, estimated surface densities were greater in the eastern section except in the autumn. Dolphins were sighted throughout the entire range of mean SST (7.60°C to 30.82°C), with a tendency towards fewer dolphins sighted as water temperatures increased. Based on the findings of this study, sea turtles are most likely to be encountered within the OPAREAs when SST is ≥ 11°C. Since sea turtle distributions are generally limited by water temperature, knowing the SST of a given area is a useful predictor of sea turtle presence. Since dolphins were observed within estuarine waters year-round and throughout the entire range of mean SST’s, they likely could be encountered in the OPAREAs any time of the year. Although our findings indicated the greatest number of dolphins to be present in the winter and the least in the summer, their movements also may be related to other factors such as the availability of prey. (PDF contains 28 pages)
Resumo:
Based on the recovery rates for Thalassia testudinum measured in this study for scars of these excavation depths and assuming a linear recovery horizon, we estimate that it would take ~ 6.9 years (95% CI. = 5.4 to 9.6 years) for T. testudinum to return to the same density as recorded for the adjacent undisturbed population. The application of water soluble fertilizers and plant growth hormones by mechanical injection into the sediments adjacent to ten propellor scars at Lignumvitae State Botanical Site did not significantly increase the recovery rate of Thalassia testudinum or Halodule wrightii. An alternative method of fertilization and restoration of propellor scars was also tested by a using a method of “compressed succession” where Halodule wrightii is substituted for T. testudinum in the initial stages of restoration. Bird roosting stakes were placed among H.wrightii bare root plantings in prop scars to facilitate the defecation of nitrogen and phosphorus enriched feces. In contrast to the fertilizer injection method, the bird stakes produced extremely high recovery rates of transplanted H. wrightii. We conclude that use of a fertilizer/hormone injection machine in the manner described here is not a feasible means of enhancing T. testudinum recovery in propellor scars on soft bottom carbonate sediments. Existing techniques such as the bird stake approach provide a reliable, and inexpensive alternative method that should be considered for application to restoration of seagrasses in these environments. Document contains 40 pages)
Resumo:
The mapping and geospatial analysis of benthic environments are multidisciplinary tasks that have become more accessible in recent years because of advances in technology and cost reductions in survey systems. The complex relationships that exist among physical, biological, and chemical seafloor components require advanced, integrated analysis techniques to enable scientists and others to visualize patterns and, in so doing, allow inferences to be made about benthic processes. Effective mapping, analysis, and visualization of marine habitats are particularly important because the subtidal seafloor environment is not readily viewed directly by eye. Research in benthic environments relies heavily, therefore, on remote sensing techniques to collect effective data. Because many benthic scientists are not mapping professionals, they may not adequately consider the links between data collection, data analysis, and data visualization. Projects often start with clear goals, but may be hampered by the technical details and skills required for maintaining data quality through the entire process from collection through analysis and presentation. The lack of technical understanding of the entire data handling process can represent a significant impediment to success. While many benthic mapping efforts have detailed their methodology as it relates to the overall scientific goals of a project, only a few published papers and reports focus on the analysis and visualization components (Paton et al. 1997, Weihe et al. 1999, Basu and Saxena 1999, Bruce et al. 1997). In particular, the benthic mapping literature often briefly describes data collection and analysis methods, but fails to provide sufficiently detailed explanation of particular analysis techniques or display methodologies so that others can employ them. In general, such techniques are in large part guided by the data acquisition methods, which can include both aerial and water-based remote sensing methods to map the seafloor without physical disturbance, as well as physical sampling methodologies (e.g., grab or core sampling). The terms benthic mapping and benthic habitat mapping are often used synonymously to describe seafloor mapping conducted for the purpose of benthic habitat identification. There is a subtle yet important difference, however, between general benthic mapping and benthic habitat mapping. The distinction is important because it dictates the sequential analysis and visualization techniques that are employed following data collection. In this paper general seafloor mapping for identification of regional geologic features and morphology is defined as benthic mapping. Benthic habitat mapping incorporates the regional scale geologic information but also includes higher resolution surveys and analysis of biological communities to identify the biological habitats. In addition, this paper adopts the definition of habitats established by Kostylev et al. (2001) as a “spatially defined area where the physical, chemical, and biological environment is distinctly different from the surrounding environment.” (PDF contains 31 pages)
Resumo:
Final report on a three year study designed to investigate the effects of the Maryland hydraulic escalator clam dredge on populations and recruitment of the soft-shell clam, Mya arenaria. Experimental plots were established in the Potomac river, Maryland, and were dredged ina commerical manner by removing only legal size clams. quarterly samples were taken in the experimental and control plots by means of a van Veen grab for juvenile clams and the hydraulic dredge for older, deeper burrowing clams. Sediment samples were taken at selected periods for organic carbon and grain size analysis. Clams were separated into two size-groups. (PDF contains 38 pages)
Resumo:
The governing council of Naca has resolved to effect a shift in emphasis from aquaculture development to aquaculture for development. This will require engaging partners from a broad spectrum of government and development agencies, the nature of the information that will need to be gathered and the strategies used for disseminating information and initiating action. The vehicle for operationalising this shift is STREAM - Support to Regional Aquatic Resources Management. This report outlines the nature of the STREAM network, its relationship to NACA's vision, mission, objectives and operating principles, and how STREAM differs from previous NACA's networks. Because STREAM is different, a theoretical basis for network communication is presented along with an outline of the preliminary steps in getting the network up and running. (Pdf contains 33 pages).
Resumo:
The Final National Workshop was held from 30-31 October 2006 in Islamabad, Pakistan, with the objectives to:
Resumo:
(PDF contains 63 pages.)
Resumo:
Sediments are an important location in determining the fate of nutrients entering the estuary. Role of sediments needs to be incorporated into water quality models. Purpose of this study was to estimate the portion of sediment oxygen consumption (SOC) and sediment ammonium (NH4+) release directly attributable to benthic invertebrates via the respiratory use of oxygen and catabolic release of ammonium. Samples were collected at 8 locations from August 1985 through November 1988. (PDF contains 45 pages)