8 resultados para Few-body systems

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The United States and Japanese counterpart panels on aquaculture were formed in 1969 under the United States-Japan Cooperative Program in Natural Resources (UJNR). The panels currently include specialists drawn from the federal departments most concerned with aquaculture. Charged with exploring and developing bilateral cooperation, the panels have focused their efforts on exchanging information related to aquaculture which could be of benefit to both countries. The UJNR was begun during the Third Cabinet-Level Meeting of the Joint United States-Japan Committee on Trade and Economic Affairs in January 1964. In addition to aquaculture, current subjects in the program include desalination of seawater, toxic microorganisms, air population, energy, forage crops, national park management, mycoplasmosis, wind and seismic effects, protein resources, forestry, and several joint panels and committees in marine resources research, development, and utilization. Accomplishments include: Increased communication and cooperation among tecbnical specialists; exchanges of information, data, and research findings; annual meetings of the panels, a· policy-coordinative body; administrative staff meetings; exchanges of equipment, materials, and samples; several major technical conferences; and beneficial effects on international relations. (PDF file contains 56 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ACT workshop "Enabling Sensor Interoperability" addressed the need for protocols at the hardware, firmware, and higher levels in order to attain instrument interoperability within and between ocean observing systems. For the purpose of the workshop, participants spoke in tern of "instruments" rather than "sensors," defining an instrument as a device that contains one or more sensors or actuators and can convert signals from analog to digital. An increase in the abundance, variety, and complexity of instruments and observing systems suggests that effective standards would greatly improve "plug-and-work" capabilities. However, there are few standards or standards bodies that currently address instrument interoperability and configuration. Instrument interoperability issues span the length and breadth of these systems, from the measurement to the end user, including middleware services. There are three major components of instrument interoperability including physical, communication, and application/control layers. Participants identified the essential issues, current obstacles, and enabling technologies and standards, then came up with a series of short and long term solutions. The top three recommended actions, deemed achievable within 6 months of the release of this report are: A list of recommendations for enabling instrument interoperability should be put together and distributed to instrument developers. A recommendation for funding sources to achieve instrument interoperability should be drafted. Funding should be provided (for example through NOPP or an IOOS request for proposals) to develop and demonstrate instrument interoperability technologies involving instrument manufacturers, observing system operators, and cyberinfrastructure groups. Program managers should be identified and made to understand that milestones for achieving instrument interoperability include a) selection of a methodology for uniquely identifying an instrument, b) development of a common protocol for automatic instrument discovery, c) agreement on uniform methods for measurements, d) enablement of end user controlled power cycling, and e) implementation of a registry component for IDS and attributes. The top three recommended actions, deemed achievable within S years of the release of this report are: An ocean observing interoperability standards body should be established that addresses standards for a) metadata, b) commands, c) protocols, d) processes, e) exclusivity, and f) naming authorities.[PDF contains 48 pages]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixing and transport processes in surface waters strongly influence the structure of aquatic ecosystems. The impact of mixing on algal growth is species-dependent, affecting the competition among species and acting as a selective factor for the composition of the biocoenose. Were it not for the ever-changing ”aquatic weather”, the composition of pelagic ecosystems would be relatively simple. Probably just a few optimally adapted algal species would survive in a given water-body. In contrast to terrestrial ecosystems, in which the spatial heterogeneity is primarily responsible for the abundance of niches, in aquatic systems (especially in the pelagic zone) the niches are provided by the temporal structure of physical processes. The latter are discussed in terms of the relative sizes of physical versus biological time-scales. The relevant time-scales of mixing and transport cover the range between seconds and years. Correspondingly, their influence on growth of algae is based on different mechanisms: rapid changes are relevant for the fast biological processes such as nutrient uptake and photosynthesis, and the slower changes are relevant for the less dynamic processes such as growth, respiration, mineralization, and settling of algal cells. Mixing time-scales are combined with a dynamic model of photosynthesis to demonstrate their influence on algal growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of metallothioneins (MTs) has greatly improved our understanding of body burdens, metal storage and detoxification in aquatic organisms subjected to contamination by the toxic heavy metals, Cd, Cu, Hg and Zn. These studies have shown that in certain organisms MT status can be used to assess impact of these metals at the cellular level and, whilst validation is currently limited to a few examples, this stress response may be linked to higher levels of organisation, thus indicating its potential for environmental quality assessment. Molluscs, such as Mytilus spp., and several commonly occurring teleost species, are the most promising of the indicator species tested. Natural variability of MT levels caused by the organism's size, condition, age, position in the sexual cycle, temperature and various stressors, can lead to difficulties in interpretation of field data as a definitive response-indicator of metal contamination unless a critical appraisal of these variables is available. From laboratory and field studies these data are almost complete for teleost fish. Whilst for molluscs much of this information is lacking, when suitable controls are utilised and MT measurements are combined with observations of metal partitioning, current studies indicate that they are nevertheless a powerful tool in the interpretation of impact, and may prove useful in water quality assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this report we have attempted to evaluate the ecological and economic consequences of hypoxia in the northern Gulf of Mexico. Although our initial approach was to rely on published accounts, we quickly realized that the body of published literature deahng with hypoxia was limited, and we would have to conduct our own exploratory analysis of existing Gulf data, or rely on published accounts from other systems to infer possible or potential effects of hypoxia. For the economic analysis, we developed a conceptual model of how hypoxia-related impacts could affect fisheries. Our model included both supply and demand components. The supply model had two components: (1) a physical production function for fish or shrimp, and (2) the cost of fishing. If hypoxia causes the cost of a unit of fishing effort to change, then this will result in a shift in supply. The demand model considered how hypoxia might affect the quality of landed fish or shrimp. In particular, the market value per pound is lower for small shrimp than for large shrimp. Given the limitations of the ecological assessment, the shallow continental shelf area affected by hypoxia does show signs of hypoxia-related stress. While current ecological conditions are a response to a variety of stressors, the effects of hypoxia are most obvious in the benthos that experience mortality, elimination of larger long-lived species, and a shifting of productivity to nonhypoxic periods (energy pulsing). What is not known is whether hypoxia leads to higher productivity during productive periods, or simply to a reduction of productivity during oxygen-stressed periods. The economic assessment based on fisheries data, however, failed to detect effects attributable to hypoxia. Overall, fisheries landings statistics for at least the last few decades have been relatively constant. The failure to identify clear hypoxic effects in the fisheries statistics does not necessarily mean that they are absent. There are several possibilities: (1) hypoxic effects are small relative to the overall variability in the data sets evaluated; (2) the data and the power of the analyses are not adequate; and (3) currently there are no hypoxic effects on fisheries. Lack of identified hypoxic effects in available fisheries data does not imply that effects would not occur should conditions worsen. Experience with other hypoxic zones around the globe shows that both ecological and fisheries effects become progressively more severe as hypoxia increases. Several large systems around the globe have suffered serious ecological and economic consequences from seasonal summertime hypoxia; most notable are the Kattegat and Black Sea. The consequences range from localized loss of catch and recruitment failure to complete system-wide loss of fishery species. If experiences in other systems are applicable to the Gulf of Mexico, then in the face of worsening hypoxic conditions, at some point fisheries and other species will decline, perhaps precipitously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of AC and DC electric stimulations on the heart-rate and the entire body of Heteropneustis fossillis, Tilapia mossambica and Macrobrachium rosenbergii were studied and presented in kymograph tracings. The reaction of spinal cord in Puntius ticto, Heteropneustis fossilis and Tilapia mossambica to D. C. field was observed to find out its role in electric shocks. A test-check of the electrical resistance of a few species was also conducted. The effect of D. C. and A.C. on the body muscle was found to be the same as that in the case of frog. Different degrees of cardiac slowing were observed in AC and DC. Unbalanced galvanotropic movements were also noticed in spinal fishes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schizothorax zarudnvi, is an endemic fish of east country waters. (Triple lagoons of Hamoon and relevant water resources) that in the world it is reported in this resource specially. This fish named Hamoon mahi is one of the most economically valuable species in this region. Because of the recent years droughts, Hamoon logoon has been drive since 2000. Also, semi-wells (a semi natural resource) were affected drastically by recent drought years and their volume reduced to nearly one third of their real volume and resulted in changing at growth and reproduction physiology process in Schizothorax zanidnyi, brood stocks. Beginning of this project was done from October 2003. It's field studies begun (brood catching) since November 2001 by two methods including entangling gairs and at semi wells of Sistan that (Beach seine) had maximum rate of preparing qualified brood stocks. Broods transferred to Cyprinidea reproduction work shop of Zahak and after taking primary measures they stored in to the edaphic pools. Increasing the success safety factor (coefficient) for artificial reproduction of Sthizothorax zarudnyi , identifying the appropriate tune for Hormonal acceptance (physiological preparation of broods) is needed , so this important work was done regularly by histological studies and GSI measurements since November. Highest GSI rates of females (%80.51) and highest IV stage abundance of sexual maturity (%l 00) were observed an march. On the base of this date, Hormone therapy was done on broods on march. The used hormones are as follows Hypophysis. extraction, GnRHa and Anti Dopamin at the dozes of 3-6 ml, 20-30kg and 10-15 ml per kg body weight respectively and 2-3 times from 11-12-80 they were injected. Injected broods kept in to two circumstances, flow-through (rounded pool) and stagnant systems. In stagnant system 14 and 19 individuals of female and male (Schizothorax zauiulnri) broods, respectively injected in 11th, 15111, 19th, and 24th of march 1380. Non of the injected broods in 11 and 15 and 19th march (in stagnant Condition) answered to Hormone therapy. After final injection broods had general less activity and a few of them died. Mean temperature of brood pond waters (daily) which were injected. Fluctuated between 10-25-13. 63°c but injected broods on 24th march had different characteristics. They had pale color and had few fecundity. In this stage of injection they hadn't any successful vulation. After injection, Mean daily water temperature was 15, 88-17, 54°c. In Flowing system, 13-16 individual of males and females respectively were injected on 15th, 19th, 22th and 23th march. None of injected producers on 15th and 19th march with mean daily water temperature of 10, 25-12°c were prepared for spawning but injected producers on 22nd an 23th march with mean daily water temperature of 13.5-1 rc responded about 75-100 percent. (Schizothorax zarudnyi) brood stocks were prepared for spawning after 353-428 hours/day from final injection. Diameter of obtained eggs (before fertilization) was between 1.9-2.3 min and of fertilized eggs was 3.8mm. Fertilized eggs of (Schizothorax zarudnyi) were hatched after 6-7 days with mean water temperature of 17.08°c. Mean length of on one day larvae was 9.47 mm. Larvae was 9.47 mm. Larvae adsorbed the whole yolk sac after , 5-6 days at 17- 1°c and were prepared for releasing in to edaphic pools. Because of the lack of necessary and complementary facilities in the region , they had to release them in to veniros and growing them for 8 days. At the end of 18th day , 35000 larvae (at first) released into an edaphic pond with a volume of 150m2. After growing them for one moth , mean length and weight of new hatched larvae was 29.41 mm and 1.12►r , respectively. With respect to results of this investigation , artificial reproduction of (Schizothorax zarudnyi) Can be possible at 14-17°C and flowing water with Hormonal treatment. It -s breeding has increased development than other cultural specious in the region. Due to high economical value of this specious in Sistan and ti-s specialization east waters of Iran and having high resistance and proper growth There is a need of it's development and reproduction and culture in fish culture fanns (edaphic ponds• two-purpose pools) at the region and country.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The status of fish stocks in a water body at any one time is a function of several factors affecting the production of fish in that water body. These include: total number (abundance) and biomass(weight) present, growth (size and age), recruitment (the quantity of fish entering the fishery) including reproduction, mortality which is caused by fishing or natural causes, Other indirect factors of major importance to the status of the stocks include production factors (water quality and availability of natural food for fish), the life history parameters of the different species making up the stocks (e.g. sex ratios, condition of the fish, reproductive potential (i.e. fecundity) etc), Changes in fish stocks do occur when any of the above listed factors directly influence aspects of growth, reproduction and mortality and therefore, numbers and standing stock (biomass). In the exploited fisheries, major research concerns regarding stocks relate to the listed factors especially: estimates of stock abundance/biomass, the quantity of fish being caught,where the fish are caught, which species are caught (relative abundance)when the fish are caught, how the fish are caught. The balance between stock abundance and amount of fish caught provides the basis for intervention. Due to the diverse characteristics of the physical water environment, fishes are in general, not evenly distributed throughout a water body. Shallow and vegetated areas tend to support higher abundance and diversity of fish species. In addition, seasonal variations in fish abundance are so strong that fluctuations in catch have to be expected at fish landings.