35 resultados para FeMo cofactor (FeMoco) and P-cluster
em Aquatic Commons
Resumo:
This partial translation from a larger paper provides taxonomic descriptions of the dinoflagellates Peridinium lomnickii, P.lomnickii var. splendida and P. wierzejskii. Illustrations are included.
Resumo:
This study document effects of short-term (96h) sublethal levels of copper, cadmium and their mixture on the amino acid composition of postlarvae of the penaeid shrimp, P.monodon and P.penicillatus . All experimental conditions were kept constant, temperature between 25-27•C and salinity 21-22 ppt. The estimated LD50 for Cu was 200 ug/L, for Cd 177.5 ug/L and for Cu.Cd mixture 250ug/L. In P. penicillatus at the same concentration of each metal, there was significant reduction in amino acid content, which was 8.01% higher than the control. Almost similar reduction in some amino acids was observed in P.monodon. At the maximum concentration of 400 ug/L, cadmium caused higher reduction in amino acid composition than did copper. Thus, amino acid composition may be regarded as a sensitive biochemical indicator of Cu and Cd toxicity because of the effect of these metals on protein synthesis, a signal of physiological stress in marine organisms subjected to heavy metal pollution.
Resumo:
Penaeus monodon and P. indicus juveniles were stocked and reared for about 3 months in earthen ponds at different density combinations with Chanos chanos. The presence of either Penaeus species at any density ratio did not affect significantly the C. chanos survival. Survival rates of the penaeids indicated that intraspecific and interspecific competition occurred and were reduced with the reduction in stocking rate. It is concluded that further studies on higher density ratios and feeding and economic consideration would be of help to the development of this kind of fishpond management system.
Resumo:
This study reports new information about searobin (Prionotus spp.) early life history from samples collected with a Tucker trawl (for planktonic stages) and a beam trawl (for newly settled fish) from the coastal waters of New Jersey. Northern searobin, Prionotus carolinus, were much more numerous than striped searobin, P. evolans, often by an order of magnitude. Larval Prionotus were collected during the period July–October and their densities peaked during September. For both species, notochord flexion was complete at 6–7 mm standard length (SL) and individuals settled at 8–9 mm SL. Flexion occurred as early as 13 days after hatching and settlement occurred as late as 25 days after hatching, according to ages estimated from sagittal microincrements. Both species settled directly in continental shelf habitats without evidence of delayed metamorphosis. Spawning, larval dispersal, or settlement may have occurred within certain estuaries, particularly for P. evolans; thus collections from shelf areas alone do not permit estimates of total larval production or settlement rates. Reproductive seasonality of P. carolinus and P. evolans may vary with respect to latitude and coastal depth. In this study, hatching dates and sizes of age-0 P. carolinus varied with respect to depth or distance from the New Jersey shore. Older and larger age-0 individuals were found in deeper waters. These variations in searobin age and size appear to be the combined result of intraspecific variations in searobin reproductive seasonality and the limited capability of searobin eggs and larvae to disperse.
Resumo:
A study on the reproductive biology of Amblema neislerii, Elliptoideus sloatianus, Lampsilis subangulata, Medionidus penicillatus, and Pleurobema pyriforme was conducted from May 1995 to May 1997. The objectives of this study were as follows: 1) determine period of gravidity for each of the five mussel species, 2) determine host fish via laboratory experiments, 3) test whether unionid glochidia will transform on a nonidingenous fish, and 4) describe the glochidial morphology for each of the five mussel species using a scanning electron microscope. Amblema neislerii are tachytictic breeders and were found with mature glochidia in May. Elliptoideus sloatianus are tachytictic breeders and were found with mature glochidia from late February to early April. Lampsilis subangulata are bradytictic breeders and were found with mature glochidia from December to August. Superconglutinates were released by L. subangulata from late May to early July. Medionidus penicillatus are bradytictic breeders and were found with mature glochidia in November and February to April. Pleurobema pyriforme are tachytictic breeders and were found with mature glochidia from March to July. The following fish species served as hosts for A. neislerii: Notropis texanus, Lepomis macrochirus, L. microlophus, Micropterus salmoides, and Percina nigrofasciata. The following fish species served as hosts for E. sloatianus: Gambusia holbrooki, Poecilia reticulata, and P. nigrofasciata. The following fish species served as hosts for L. subangulata: G. holbrooki, P. reticulata, L. macrochirus, Micropterus punctulatus, and M. salmoides. The following fish species served as hosts for M. penicillatus: G. holbrooki, P. reticulata, Etheostoma edwini, and P. nigrofasciata. The following fish species served as hosts for P. pyriforme: Pteronotropis hypselopterus, G. holbrooki, and P. reticulata. Poecilia reticulata, a nonindigenous fish, served as a host for E. sloatianus, L. subangulata, M. penicillatus, and P. pyriforme. (76 page document)
Resumo:
Venomous Indo-Pacific lionfish (Pterois miles and P. volitans) are now established along the Southeast U.S.A. and parts of the Caribbean and pose a serious threat to reef fish communities of these regions. Lionfish are likely to invade the Gulf of Mexico and potentially South America in the near future. Introductions of lionfish were noted since the 1980s along south Florida and by 2000 lionfish were established off the coast of North Carolina. Lionfish are now one of the more numerous predatory reef fishes at some locations off the Southeast U.S.A. and Caribbean. Lionfish are largely piscivores that feed occasionally on economically important reef fishes. The trophic impacts of lionfish could alter the structure of native reef fish communities and potentially hamper stock rebuilding efforts of the Snapper –Grouper Complex. Additional effects of the lionfish invasion are far-reaching and could increase coral reef ecosystem stress, threaten human health, and ultimately impact the marine aquarium industry. Control strategies for lionfish are needed to mitigate impacts, especially in protected areas. This integrated assessment provides a general overview of the biology and ecology of lionfish including genetics, taxonomy, reproductive biology, early life history and dispersal, venom defense and predation, and feeding ecology. In addition, alternative management actions for mitigating the negative impacts of lionfish, approaches for reducing the risk of future invasions, and directions for future research are provided.
Resumo:
Sex ratio and fecundity variations of Chrysichthys nigrodigitatus and Chrysichthys walkeri from Asejire Lake (Nigeria) were examined. The Logarithm transformation of weight (W) against standard length (SL) gave a straight-line graph represented by the following equations: 1) C. nigrodigitatus LogW =-0.66 + 2.13 Log SL; = 0.854; (P < 0.001) n = 209; 2) C. walkeri LogW = -1.23 + 2.63 Log SL; = 0.759; (P < 0.001) n = 237. Males were generally more than females in both species. The ratio of males:females was higher in C. nigrodigitatus (1:0.18) than in C. walkeri (1:0.8). C. walkeri attained sexual maturity at a smaller size of 20.0 g (12.0 cm Standard Length) compared with C. nigrodigitatus maturity size of 45.0 g (14.0 cm Standard Length). Relative fecundity was not dependent on body weight and standard length for C. walkeri but it was significant at P < 0.05 and P < 0.01 respectively for C. nigrodigitatus
Resumo:
In most lakes, zooplankton production is constrained by food quantity, but frequently high C:P poses an additional constraint on zooplankton production by reducing the carbon transfer efficiency from phytoplankton to zooplankton. This review addresses how the flux of matter and energy in pelagic food webs is regulated by food quantity in terms of C and its stoichiometric quality in terms of C:P. Increased levels of light, CO2 and phosphorus could each increase seston mass and, hence, food quantity for zooplankton, but while light and CO2 each cause increased C:P (i.e. reduced food quality for herbivores), increased P may increase seston mass and its stoichiometric quality by reducing C:P. Development of food quality and food quantity in response to C- or P-enrichments will differ between 'batch-type' lakes (dominated by one major, seasonal input of water and nutrients) and 'continuous-culture' types of lakes with a more steady flow-rate of water and nutrients. The reciprocal role of food quantity and stoichiometric quality will depend strongly on facilitation via grazing and recycling by the grazers, and this effect will be most important in systems with low renewal rates. At high food abundance but low quality, there will be a 'quality starvation' in zooplankton. From a management point of view, stoichiometric theory offers a general tool-kit for understanding the integrated role of C and P in food webs and how food quantity and stoichiometric quality (i.e. C:P) regulate energy flow and trophic efficiency from base to top in food webs.From a management point of view, stoichiometric theory offers a general tool-kit for understanding the integrated role of C and P in food webs and how food quantity and stoichiometric quality (i.e. C:P) regulate energy flow and trophic efficiency from base to top in food webs.
Resumo:
Ninety (90) hatchery bred fingerlings of Clarias gariepinus (mean weight: 0.96 ± 0.1g) were randomly placed in 15 plastic baths (25 litres each) at the Research laboratory and were exposed to different concentrations of oil products to determine their effects on the fish, to facilitate inferential deductions that will enhance effective aquatic environmental management. Three (3) replicate basins of 5 experimental treatments (crude oil, petrol oil, kerosene oil, engine oil and control) were used at a concentration of 1.25ml. L-1. The control experiment was devoid of oil treatment. Six (6) fingerlings were placed in each replicate basin, flooded with 20 litres of clean tap water and fed with nutrafin cichilid food, 2 times daily at 3% body weight. The results showed that the feeding behaviour and swimming performances of fish were reduced after 24 hours of the addition of the various oil pollutants. Mortality of fingerlings in the oiled basins increased as the hours of exposure increased (i.e. 24, 48, 72 and 96 hours). Recovery was not immediate in the treated basin while surviving fingerlings in the control basins grew up to post-fingerlings after 90 days (3 months). There were significant differences (P<0.01 and P<0.05) in the effect of crude oil and the petroleum products on the mortality rate of C. gariepinus when exposed to oil pollutants at 1.25ml. L-1 concentration
Resumo:
Dissection can provide unique information on the physiology, biology and ecology of organisms. This document describes protocols for dissecting lionfish (Pterois volitans and P. miles). Protocols were developed to provide guidance to trained research personnel. Lionfish are native to the Indo-Pacific, but have become established in marine habitats within the Western Atlantic, Gulf of Mexico and Caribbean. The protocols described within this document were designed to help standardize handling and dissection methodologies for these species, with the goal of improving the coordination of research (e.g., Lionfish Tissue Repository; Appendix V). We focus on dissection methods, which yield data that contribute to our understanding of lionfish biology and ecology. By pairing dissection information with environmental and biotic data, researchers and managers can better understand lionfish population structure and dynamics, age and growth, reproductive biology, and food web ecology on various temporal and spatial scales.
Resumo:
Pseudotolithus typus and P. senegalensis (Sciaenidae) sampled off Cameroon Coast, West Africa, have been found to feed mainly on shrimps (Nematoplaemon hastatus and Parapenaeopsis atlantica) and juvenile fish (mostly clupeids). The diet composition is presented and discussed.
Resumo:
A benthic survey was carried out from November 1998 to December 1999 in the tidal flats of Bahía Samborombón (Río de la Plata estuary, Argentina), in order to study the population structure, reproductive aspects, growth and secondary production of Capitella capitata (Fabricius, 1780). Growth was analyzed using ELEFAN routine, and the secondary production was estimated by Hynes and Coleman's method (1968). C. capitata did not present periods of very important recruitments throughout the year; however, the abundance of smallest size classes was higher during summer and autumn. The summer cohort showed a growth rate (K) of 2.05 and a seasonal growth oscillation (C) of 0.6, pointing out that worms grew very slowly during winter months. The life span of this cohort was 13 months. The autumn cohort showed a lower growth rate (K= 1.5) and its growth was lowest during winter. The life span was 15 months for this cohort. C. capitata in Punta Rasa presented an extended reproductive period, with absence of activity during winter months. The type of eggs and larvae suggest that C. capitata has benthic larval development in the study area, destining its reproductive effort to the production of a low number of eggs, and assuring larvae survival through incubation in brooding tubes. The annual mean biomass in Punta Rasa was 0.117 g m-2 (AFDW), with a mean secondary production of 0.23 g m-2 y-1 and a P/B ratio of 1.96 y-1. The relatively low density, biomass production and P/B ratio of C. capitata in Punta Rasa can be considered as reference values for this species inhabiting undisturbed or moderately disturbed areas.
Resumo:
Karenia brevis is the dominant toxic red tide algal species in the Gulf of Mexico. It produces potent neurotoxins (brevetoxins [PbTxs]), which negatively impact human and animal health, local economies, and ecosystem function. Field measurements have shown that cellular brevetoxin contents vary from 1–68 pg/cell but the source of this variability is uncertain. Increases in cellular toxicity caused by nutrient-limitation and inter-strain differences have been observed in many algal species. This study examined the effect of P-limitation of growth rate on cellular toxin concentrations in five Karenia brevis strains from different geographic locations. Phosphorous was selected because of evidence for regional P-limitation of algal growth in the Gulf of Mexico. Depending on the isolate, P-limited cells had 2.3- to 7.3-fold higher PbTx per cell than P-replete cells. The percent of cellular carbon associated with brevetoxins (%C-PbTx) was ~ 0.7 to 2.1% in P-replete cells, but increased to 1.6–5% under P-limitation. Because PbTxs are potent anti-grazing compounds, this increased investment in PbTxs should enhance cellular survival during periods of nutrient-limited growth. The %C-PbTx was inversely related to the specific growth rate in both the nutrient-replete and P-limited cultures of all strains. This inverse relationship is consistent with an evolutionary tradeoff between carbon investment in PbTxs and other grazing defenses, and C investment in growth and reproduction. In aquatic environments where nutrient supply and grazing pressure often vary on different temporal and spatial scales, this tradeoff would be selectively advantageous as it would result in increased net population growth rates. The variation in PbTx/cell values observed in this study can account for the range of values observed in the field, including the highest values, which are not observed under N-limitation. These results suggest P-limitation is an important factor regulating cellular toxicity and adverse impacts during at least some K. brevis blooms.
Resumo:
The Indo-Pacific lionfish, Pterois miles and P. volitans, have recently invaded the U.S. east coast and the Caribbean and pose a significant threat to native reef fish communities. Few studies have documented reproduction in pteroines from the Indo-Pacific. This study provides a description of oogenesis and spawn formation in P. miles and P. volitans collected from offshore waters of North Carolina, U.S.A and the Bahamas. Using histological and laboratory observations, we found no differences in reproductive biology between P. miles and P. volitans. These lionfish spawn buoyant eggs that are encased in a hollow mass of mucus produced by specialized secretory cells of the ovarian wall complex. Oocytes develop on highly vascularized peduncles with all oocyte stages present in the ovary of spawning females and the most mature oocytes placed terminally, near the ovarian lumen. Given these ovarian characteristics, these lionfish are asynchronous, indeterminate batch spawners and are thus capable of sustained reproduction throughout the year when conditions are suitable. This mode of reproduction could have contributed to the recent and rapid establishment of these lionfish in the northwestern Atlantic and Caribbean.