4 resultados para Fe-mn
em Aquatic Commons
Resumo:
Bioassay were carried out on 48h cultured nauplii of brine shrimp Artemia by exposing them to seven trace elements viz. copper (Cu), zinc (Zn), cadmium (Cd), nickel (Ni), lead (Pb), iron (Fe) and manganese (Mn). Synergistic effects of all these elements and additive effects of Cu and Zn, Cd and Pb, and Ni and Fe were also investigated. Comparatively, the degree of toxicity for compound bioassays was higher than individual simple tests. The values were averaged and the expected median lethal concentration [LC sub(50)] of tested heavy metals was obtained by probit analysis on the basis of cumulative numbers of dead organisms after 24 and 48h. The order of toxicity of the metals to Artemia was Pb>Cd>Cu>Ni>Zn>Fe>Mn. Potency ratios of the seven metals were also calculated. The 24 and 48h variations obtained in LC sub(50) values were significantly different and relative implications of these are discussed.
Resumo:
This work focuses on four marine sites in the Mediterranean Sea around the Nile Delta, Egypt. Surface water samples were collected seasonally during 2003. The concentrations of some heavy metals in dissolved form (Fe, Mn, Zn, Cu, Ni and Pb) are evaluated. The levels of heavy metals in the coastal waters were 11.92-30.4512µglˉ¹ for Fe; 5.79-17.36 µglˉ¹ for Zn; 0.30-0.83µglˉ¹ for Cu; 0.51-2.90µglˉ¹ for Ni and 0.53-10.31µglˉ¹ for Pb. These are compared, with sites in the estuaries and outlets of the Nile Delta. Fe (19.72-60.33µglˉ¹); Mn (12.63-35.60µglˉ¹); Zn (2.67-22.00); Cu (0.56-1.67µglˉ¹); Ni (1.43-3.73µglˉ¹); Pb (1.72-59.7µglˉ¹). The results showed a remarkable decrease in the concentrations of different heavy metals with increased salinity. Comparing the present data with the minimal risk concentration reported by WQC, the distribution of heavy metals was significantly lower in coastal sea water of the Mediterranean Sea off Egypt. The study indicated also that the average contents of Ni and Pb are slightly high in the area of water exchange than those reported by WQC.
Resumo:
The water and bottom sediments of Lake Victoria (Kenya) were analysed for A1, Fe, Mn, Zn, Pb, Cu, Cr and Cd. The total metal concentrations were determined and their mean variations and distributions discussed. The bottom lake waters showed higher concentration levels than the surface waters. The range of values (in mg/l) in the bottom and surface lake waters were as follows: Surface Waters: A1(0.08 - 3.98), Fe(0.09 - 4.01), Mn(0.02 - 0.10). Zn(0.01 -0.07), Pb(0.001- 0.007), Cu(not detected - 0.006), Cr(not detected - 0.004). Bottom Waters: A1(0.1 0 - 6.59), Fe(0.23 - 9.64), Mn(0.04 - 0.39), Zn(0.01- 0.08), Pb(0.002 - 0.009), Cu(not detected - 0.03). Cr(not detected -0.002). River mouths and shallow areas in the lake showed higher total metal concentrations than offshore deeper areas. Apart from natural metal levels, varied urban activities and wastes greatly contribute to the lake metal pollution as shown by high Pb and Zn levels in sediments, around Kisumu and Homa Bay areas. Other comparatively high values and variations could be attributed to the varied geological characteristics of the lake and its sediments. Compared to the established W.H.O (1984) drinking water standards manganese, aluminium and iron levels were above these limits whereas zinc, lead, chromium, copper and cadmium were below.
Resumo:
This paper deals with the qualification of water and sediment particularly those of benthos, as well as their interaction results, through careful laboratory researches within 24 experimental sites around the bank of Bandar Taheri, Persian Gulf water of Iranian borders, under 13th phase south Pars project. Samples were carried to the laboratories and careful experimental tests such as physical chemical, heavy metal, nitrate ammoniac, toc and other biologic tests including various type of benthos count were performed. Data gained through Shanon and Dankan statistical analyses were also studied to determine the water, sediment and pollution rate. Resulted information would classify the area as less polluted area which is rather away from critical environmental zone, another word the area could be liable to change to an undesired one while the density rates of principal metals follows the Fe>Mn>Zn>Cu>Pb>Cd>N pattern.