10 resultados para Fall velocity
em Aquatic Commons
Study and investigation of the various reactions of Mazandaran Province shoreline against wind waves
Resumo:
Determining of beach states and study of manner sediment transmission in beach profile, involves the evaluating the actions of hydrodynamic forces dominated over the beaches, in this research through determining the beach states by the help of Hanson and short method, different reactions of Mazandaran’s shoreline against wind waves was studied and investigated. For this reason, First, the kind of hydrodynamic forces dominated over the beaches of this province was studied and beaches of the this province was distinguished as wave–dominated beaches, afterwards eight stations are chosen throughout the shoreline and the waves qualities and the sediments regarding to different depth was evaluated in these stations by using software and laboratory actions. In this way the parameter of dimensionless fall velocity each station was calculated and the beach states and their changes according to time was studied. Finally, the gained information is located in the software area of Arc GIS, and the waves dynamics and the way of erosion and accretion was evaluated in each station. In this research by study of air photographs during a thirty years period we found that was no remarkable changes at shoreline in western and central parts and each type of change depends upon the delta, while eastern part of coast at the location of breakwaters in neighbouring of Farahabad Station, accretion features is quiet evident. In the main results of this research, it became obvious that the beach state in the stations Neca, Farahabad, Larim, Naftchal, Mazandaran university, Babolsar, Noor is dissipative and the beach in Nashtarood station is in intermediate (ridge and runnel) state to the extend that in the dissipation beaches from east to west, the degree of dissipation of the beaches is decreased continuously.
Resumo:
ESSP 660 Advanced Watershed Science and Policy is a graduate class taught in the Master of Science in Coastal and Watershed Science & Policy program at California State University Monterey Bay. In 2007, the class was taught in four 4-week modules, each focusing on making a small contribution to a local watershed issue. This report describes the results of one of those 4-week modules – on Carmel Lagoon Water Quality and Ecology. The module was lead instructed by Fred Watson (CSUMB) and Kevan Urquhart (MPWMD). (Document contains 54 pages)
Resumo:
During the late 1980s to early 1990s a range of aquatic habitats in the central North Island of New Zealand were invaded by the filamentous green alga, water net Hydrodictyon reticulatum (Linn. Lagerheim). The alga caused significant economic and recreational impacts at major sites of infestation, but it was also associated with enhanced invertebrate numbers and was the likely cause of an improvement in the trout fishery. The causes of prolific growth of water net and the range of control options pursued are reviewed. The possible causes of its sudden decline in 1995 are considered, including physical factors, increase in grazer pressure, disease, and loss of genetic vigour.
Resumo:
The broad scale features in the horizontal, vertical, and seasonal distribution of phytoplankton chlorophyll a on the northeast U.S. continental shelf are described based on 57,088 measurements made during 78 oceanographic surveys from 1977 through 1988. Highest mean water column chlorophyll concentration (Chlw,) is usually observed in nearshore areas adjacent to the mouths of the estuaries in the Middle Atlantic Bight (MAB), over the shallow water on Georges Bank, and a small area sampled along the southeast edge of Nantucket Shoals. Lowest Chlw «0.125 ug l-1) is usually restricted to the most seaward stations sampled along the shelf-break and the central deep waters in the Gulf of Maine. There is at least a twofold seasonal variation in phytoplankton biomass in all areas, with highest phytoplankton concentrations (m3) and highest integrated standing stocks (m2) occurring during the winter-spring (WS) bloom, and the lowest during summer, when vertical density stratification is maximal. In most regions, a secondary phytoplankton biomass pulse is evident during convective destratification in fall, usually in October. Fall bloom in some areas of Georges Bank approaches the magnitude of the WS-bloom, but Georges Bank and Middle Atlantic Bight fall blooms are clearly subordinate to WS-blooms. Measurements of chlorophyll in two size-fractions of the phytoplankton, netplankton (>20 um) and nanoplankton «20 um), revealed that the smaller nanoplankton are responsible for most of the phytoplankton biomass on the northeast U.S. shelf. Netplankton tend to be more abundant in nearshore areas of the MAB and shallow water on Georges Bank, where chlorophyll a is usually high; nanoplankton dominate deeper water at the shelf-break and deep water in the Gulf of Maine, where Chlw is usually low. As a general rule, the percent of phytoplankton in the netplankton size-fraction increases with increasing depth below surface and decreases proceeding offshore. There are distinct seasonal and regional patterns in the vertical distribution of chlorophyll a and percent netplankton, as revealed in composite vertical profiles of chlorophyll a constructed for 11 layers of the water column. Subsurface chlorophyll a maxima are ubiquitous during summer in stratified water. Chlorophyll a in the subsurface maximum layer is generally 2-8 times the concentration in the overlying and underlying water and approaches 50 to 75% of the levels observed in surface water during WS-bloom. The distribution of the ratio of the subsurface maximum chlorophyll a to surface chlorophyll a (SSR) during summer parallels the shelfwide pattern for stability, indexed as the difference in density (sigma-t) between 40 m and surface (stability 40. The weakest stability and lowest SSR's are found in shallow tidally-mixed water on Georges Bank; the greatest stability and highest SSR's (8-12:1) are along the mid and outer MAB shelf, over the winter residual water known as the "cold band." On Georges Bank, the distribution of SSR and the stability40 are roughly congruent with the pattern for maximum surface tidal current velocity, with values above 50 cms-1 defining SSR's less than 2:1 and the well-mixed area. Physical factors (bathymetry, vertical mixing by strong tidal currents, and seasonal and regional differences in the intensity and duration of vertical stratification) appear to explain much of the variability in phytoplankton chlorophyll a throughout this ecosystem. (PDF file contains 126 pages.)
Resumo:
Articles by faculty: Death by a thousand cuts - Boesch; Revealing the cost of wetland loss - King; Contaminated Waste: an unprecedented disposal problem - Baker; Kay Simkins - volunteer extraordinaire - McGuire; Fisheries likely to revive - Houde; Teachers get hands into Chesapeake Research - Wolf. (PDF contains 6 pages)
Resumo:
When salmonid redds are disrupted by spates, the displaced eggs will drift downstream. The mean distance of travel, the types of locations in which the eggs resettle and the depth of reburial of displaced eggs are not known. Investigation of these topics under field conditions presents considerable practical problems, though the use of artificial eggs might help to overcome some of them. Attempts to assess the similarities and/or differences in performance between real and artificial eggs are essential before artificial eggs can validly be used to simulate real eggs. The present report first compares the two types of egg in terms of their measurable physical characteristics (e.g. dimensions and density). The rate at which eggs fall in still water will relate to the rate at which they are likely to resettle in flowing water in the field. As the rate of fall will be influenced by a number of additional factors (e.g. shape and surface texture) which are not easily measured directly, the rates of fall of the two types of egg have been compared directly under controlled conditions. Finally, comparisons of the pattern of settlement of the two types of egg in flowing water in an experimental channel have been made. Although the work was primarily aimed at testing the value of artificial eggs as a simulation of real eggs, several side issues more directly concerned with the properties of real eggs and the likely distance of drift in natural streams have also been explored. This is the first of three reports made on this topic by the author in 1984.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The recent changes in phytoplankton production and community composition within the Suisun Bay and Sacramento-San Joaquin Delta may be related to climate. Chlorophyll a concentration, decreased by 42% (spring-summer) and 29% (fall) between 1972 through 1976 and 1977 through 1981. The decrease in biomass was characterized by a shift in phytoplankton community dominance from Skeletonema spp., Cyclotella spp. and Coscinodiscus spp. to Melosira granulata. The possible influence of climate on phytoplankton abundance was suggested by multivariate statistical analyses that demonstrated an association between changes in phytoplankton community composition and abundance between 1975 and 1982 and the climate related variables wind velocity, precipitation, river flow and water temperature.
Resumo:
Light traps and channel nets are fixed-position devices that involve active and passive sampling, respectively, in the collection of settlement-stage larvae of coral-reef fishes. We compared the abundance, taxonomic composition, and size of such larvae caught by each device deployed simultaneously near two sites that differed substantially in current velocity. Light traps were more selective taxonomically, and the two sampling devices differed significantly in the abundance but not size of taxa caught. Most importantly, light traps and channel nets differed greatly in their catch efficiency between sites: light traps were ineffective in collecting larvae at the relatively high-current site, and channel nets were less efficient in collecting larvae at the low-current site. Use of only one of these sampling methods would clearly result in biased and inaccurate estimates of the spatial variation in larval abundance among locations that differ in current velocity. When selecting a larval sampling device, one must consider not only how well a particular taxon may be represented, but also the environmental conditions under which the device will be deployed.