3 resultados para Fairclough
em Aquatic Commons
Resumo:
Nitrogen is essential for the normal growth of fish. It is an important ingredient in fish feed but is very expensive. There is evidence that nitrogen loading from feeding and metabolic activities of fish can cause pollution of the receiving waters. This paper reviews nitrogen losses and nitrogen retention in fish and suggests ways of reducing nitrogen loading to the environment for a sustainable aquaculture program.
Resumo:
Zooplankton are an important food source for many species of fish. They can provide an inexpensive alternative to other commercial feeds. Zooplankton have several advantages, among them a faster growth and greater feed efficiency for some species. The flavor and texture of fish are also improved with zooplankton as feed. Further research is needed on the chemical composition of zooplankton, the development of zooplankton-based dry diets and the effects of the replacement of fish meal with zooplankton meal for commercial aquaculture species.
Resumo:
Phosphorus is an essential element for living organisms and exists in waterbodies as dissolved and particulate forms. Phosphorus is required for optimum growth, feed efficiency, bone development and maintenance of acid-base regulation in fish. The presence of high concentration of phosphates in water may indicate presence of pollution as it may accelerate plant growth and disrupt the aquatic ecosystem thereby benefiting certain species and altering species diversity in affected areas. Eutrophication of waterbodies is often correlated with the phosphorus loading into the environment and aquaculture has been identified as one of the sources of phosphorus pollution. Details of the impacts of eutrophication is given in Bernhardt (1981). Phosphorus must be provided in fish feed because of its low concentration in water. Studies made in Europe and Northern America have revealed a phosphorus surplus in most commercial feeds which is above actual requirements; or is supplied in a form which is unavailable to the fish. Surplus phosphorus is excreted, while unavailable phosphorus is passed out in the feces. Discharge of phosphorus from fish farms and hatchery effluents have caused phosphorus pollution in Nordic countries, North America and Europe. This article examines the path of phosphorus pollution, quantification/prediction of phosphorus load from aquaculture and remedial measures.