7 resultados para Facilities.
em Aquatic Commons
Resumo:
Hurricane Isabel made landfall as a Category 2 Hurricane on 18 September 2003, on the North Carolina Outer Banks between Cape Lookout and Cape Hatteras, then coursed northwestward through Pamlico Sound and west of Chesapeake Bay where it downgraded to a tropical storm. Wind damage on the west and southwest shores of Pamlico Sound and the western shore of Chesapeake Bay was moderate, but major damage resulted from the storm tide. The NOAA, National Ocean Service, National Centers for Coastal Ocean Sciences, Center for Coastal Fisheries and Habitat Research at Beaufort, North Carolina and the Center for Coastal Environmental Health and Biomedical Research Branch at Oxford, Maryland have hurricane preparedness plans in place. These plans call for tropical storms and hurricanes to be tracked carefully through NOAA National Weather Service (NWS) watches, warnings, and advisories. When a hurricane watch changes to a hurricane warning for the areas of Beaufort or Oxford, documented hurricane preparation plans are activated. Isabel exacted some wind damage at both Beaufort and Oxford. Storm tide caused damage at Oxford, where area-wide flooding isolated the laboratory for many hours. Storm tide also caused damage at Beaufort. Because of their geographic locations on or near the open ocean (Beaufort) or on or near large estuaries (Beaufort and Oxford), storm tide poses a major threat to these NOAA facilities and the safety of federal employees. Damage from storm surge and windblown water depends on the track and intensity of a storm. One tool used to predict storm surge is the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model of the NWS, which provides valuable surge forecasts that aid in hurricane preparation.
Resumo:
This report offers guidelines for the provision of adequate port reception facilities for vessel-generated garbage under the requirements of Annex V of the International Convention for the Prevention of Pollution From Ships, 1973 (MARPOL 73/78), Regulations for the Prevention of Pollution by Garbage from Ships. MARPOL Annex V prohibits at-sea disposal of plastic materials from vessels, and specifies the distance from shore at which other materials may be dumped. Annex V also requires the provision of port reception facilities for garbage, but it does not specify these facilities or how they are to be provided. Since the at-sea dumping restrictions apply to all vessels, the reception facility requirement applies to all ports, terminals, and marinas that serve vessels. These guidelines were prepared to assist port owners and operators in meeting their obligation to provide adequate reception facilities for garbage. The report synthesizes available information and draws upon experience from the first years ofimplementation of MARPOL Annex V. (PDF file contains 55 pages.)
Resumo:
Proliferation of water withdrawals and new pump intake and screen designs has occurred with the growth of irrigated agriculture along the Columbia and Snake Rivers. Concern for the protection of anadromous and resident fish populations resulted in formulation of a survey of the water withdrawal systems. The survey included distribution studies of juvenile fish near pump sites and field inspection of those sites to determine adequacy of screening for protection of fish. A total of 225 sites were inspected in 1979 and 1980, with a follow-up inspection of 95 sites in 1982. Results indicated a definite trend toward lack of concern for the condition of fish protective facilities. Only 4 out of 22 sites not meeting criteria in 1979 had been upgraded to acceptable conditions. Of more concern, 13 of the sites meeting criteria in 1979 were below criteria when reinspected in 1982. Some of the discrepancies included lack of protective screens, poorly maintained screens, and screens permitting excessive velocity that could result in impingement of larvae or small fish. A conclusion from these surveys is that if adequate protection for fish is to exist, screens for water withdrawals need to be properly installed, inspected, and maintained. (PDF file contains 40 pages.)
Resumo:
Fish farming practices in the Lake Kainji Area of Nigeria are categorized under seven main cultural facilities, namely, earthen ponds/reservoirs, indoor/outdoor concrete tanks, plastic tanks, floating cages/hapas, aquaria, sewage and feral conditions. The presence of Bacteria isolates associated with diseased fish conditions varied significantly (P<0.05) with different cultural facilities. The highest bacteria isolates and bacterial disease incidence, 33% and 46% respectively, was associated with diseased fish in the indoor/outdoor concrete tanks. The least incidence of bacteria isolates (3.5%) and blue bacterial disease (3%) was associated with diseased fish in the aquaria and feral conditions. Nine Gram-negative and two Gram-positive bacteria genera were isolated during this investigation. Pseudomonas spp. (23.6%) and Staphylococcus spp. (14.3%), were the predominant Gram-negative and Gram-positive bacteria genera in the different cultural facilities, respectively. This paper highlights the relevance of occurrence and distribution of bacteria isolates associated with diseased fish to bacterial fish diseases under different cultural facilities
Resumo:
The author presents a brief account of the infrastructure facilities required for the fishing industry. He describes those facilities presently available in Sri Lanka, and those that are under construction, and gives a few suggestions indicating the nature of infrastructure facilities that are vital to the local situation at its present stage of development. The principal facilities discussed are (1) fish landing places; (2) unloading handling facilities; (3) vessel servicing facilities; and (4) navigation aids.
Resumo:
In 1967 the then University College of Dar es Salaam built a small laboratory on the shore at Kunduchi, 16 km from the main campus and 24 km north of Dar es Salaam. This was used for undergraduate field courses, and as a base for staff from the University to carry out research. It soon became apparent that the urgent need for studies of the marine environment in the East African area, and the lack of existing facilities, necessitated the development of the Kunduchi Marine Biology station into a research establishment with its own staff of full time scientists. This operation began in 1970: necessary structural modifications have been made to the building, staff have been recruited, and the station has been equipped with an adequate range of field and laboratory apparatus. A varied programme of research is now actively under way.