2 resultados para FIB-SEM

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Generally, wetlands are thought to perform water purification functions, removing contaminants as water flows through sediment and vegetation. This paradigm was challenged when Grant et al. (2001) reported that Talbert Salt Marsh (Figure 1.) increased fecal indicator bacteria (FIB) output to coastal waters, contributing to poor coastal water quality. Like most southern California wetlands, Talbert Salt Marsh has been severely degraded. It is a small (10 ha), restored wetland, only 1/100th its original size, and located at the base of a highly urbanized watershed. Is it reasonable to expect that this or any severely altered wetland will perform the same water purification benefits as a natural wetland? To determine how a more pristine southern California coastal wetland attenuated bacterial contaminants, we investigated FIB concentrations entering and exiting Carpinteria Salt Marsh (Figure 2.), a 93 ha, moderate-sized, relatively natural wetland.(PDF contains 4 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shellfish bed closures along the North Carolina coast have increased over the years seemingly concurrent with increases in population (Mallin 2000). More and faster flowing storm water has come to mean more bacteria, and fecal indicator bacterial (FIB) standards for shellfish harvesting are often exceeded when no source of contamination is readily apparent (Kator and Rhodes, 1994). Could management reduce bacterial loads if the source of the bacteria where known? Several potentially useful methods for differentiating human versus animal pollution sources have emerged including Ribotyping and Multiple Antibiotic Resistance (MAR) (US EPA, 2005). Total Maximum Daily Load (TMDL) studies on bacterial sources have been conducted for streams in NC mountain and Piedmont areas (U.S. EPA, 1991 and 2005) and are likely to be mandated for coastal waters. TMDL analysis estimates allowable pollutant loads and allocates them to known sources so management actions may be taken to restore water to its intended uses (U.S. EPA, 1991 and 2005). This project sought first to quantify and compare fecal contamination levels for three different types of land use on the coast, and second, to apply MAR and ribotyping techniques and assess their effectiveness for indentifying bacterial sources. Third, results from these studies would be applied to one watershed to develop a case study coastal TMDL. All three watershed study areas are within Carteret County, North Carolina. Jumping Run Creek and Pettiford Creek are within the White Oak River Basin management unit whereas the South River falls within the Neuse River Basin. Jumping Run Creek watershed encompasses approximately 320 ha. Its watershed was a dense, coastal pocosin on sandy, relic dune ridges, but current land uses are primarily medium density residential. Pettiford Creek is in the Croatan National Forest, is 1133 ha. and is basically undeveloped. The third study area is on Open Grounds Farm in the South River watershed. Half of the 630 ha. watershed is under cultivation with most under active water control (flashboard risers). The remaining portion is forested silviculture.(PDF contains 4 pages)