13 resultados para Eyes
em Aquatic Commons
Resumo:
Eyes on Their Finger Tips deals with the traditional marine wisdom of a set of people and the rarest of rare experiences they have had at sea. Through these numerous chapters he takes us into the seas of the fishers. It is a voyage which we cannot make in reality. But through the heroic deeds of his father, the riddles of oldman Sebesti, the shark story of brother Kamalappan, and the rituals of his mother, we get a fascinating peep into the wisdom of the watery world of the small-scale fishers of Trivandrum, Kerala, India.
Resumo:
Report/South Africa- Recasting the Net, What’s New, Webby?- European Parliament resolution recognizes women in fisheries,America/Canada- Stuck at the back of the boat, Milestones- Magna Carta of Women adopted in Philippines, Profile- Chitra Suriyakumar: Living in Hope, Report/India- Women, the Eyes of the World, Q&A- Interview with Clarisse Canha from Associação para a Igualdade e Direitos das Mulheres —Association for Equality and Rights for Women (UMAR-Azores), Yemaya Mama- ... sums it up !! Yemaya Recommends- Fisherwomen, Fishermen’s Wives.
Resumo:
In previous papers the sensibility of pelagic and demersal fishes caught at depth of up to 80 m was reported. This paper deals with the sensitiveness of flatfishes, gadids, and redfish caught at depth between 260 and 450 m and with trawling times between 1 and 6 h. The sensitiveness of the fishes was tested according to the method described in previous publications (Münkner et. al. 1998) after 10 min keeping in running sea water and after 1h bulk storage respectively. The sensitiveness of the fishes increased from cod to saithe to haddock. Surprisingly American plaice and Greenland halibut turned out to be very sensitive, far more sensitive than plaice and dab caught at lower depths in the North Sea. This was indicated by the high amount of animals showing rigor already after a trawling time of 2 hand 10 min of keeping in seawater. After 1 h of bulk storage and increasing trawling time sensitiveness of all fishes decreased, as expected, significantly. Besides mechanical encroachments the main problem for the fishes caught at greater depths was the gas supersaturation in the blood and tissue causing blockage of the gill capillary vessels, exophthalmus, visible gas bubbles in the skin and eyes, and in some cases protusion of the intestines through the snout due to rapid dilatation of the swimbladder.
Resumo:
Colour measurements were performed on smoked Norwegian salmon sides using an objective method based on the CIELab-system. The influence of a freeze/thaw cycle was evaluated. Already after a short frozen storage of 8 hours a signiticant colour difference could be noticed. This was manifested by an increase in lightness as well as in redness and yellowness as result of the freeze/thaw cycle. These colour changes were observable by eyes too.
Resumo:
In June 1994 and 1995 stations in the North, Irish, Celtic Seas and the Channel were studied for the occurrence of Myxobolus aeglefini in whiting (Merlangius merlangus). The disease was visible externally as either white nodules of a few millimeters diameter in the upper mouth cavity, gill arches and the basis of pelvic fins and in severe cases also on the lower jaws or in the cornea and sclera of the eye. It was verified morphometrically in histological sections of infected eyes by size and shape of spores. Myxobolus aeglefini was present in low prevalences at two North Sea stations and high prevalences of up to 49 % in the Irish Sea (Solway Firth) during both cruises. Whiting between 23 and 55 cm were found to be infected. Neither length-age prevalences nor condition factors and gonado, spleen, liver somatic indices differed in diseased and healthy fishes.
Resumo:
Detailed descriptions of the early development of the striped bass, Roccus saxitilis (Walbaum), with emphasis on variation in size and morphology, sequence of fin formation, changes in body form, and attainment of the full complement of maristic numbers, are presented and illustrated for the first time. The egg is spherical, transparent, non-adhesive and relatively large. It is pelagic and buoyant, although it sinks in quiet fresh water. When unfertilized, it averages 1.3 mm, in diameter, but is 3.4 mm. when fertilized and water-hardened. The granular yolk sac, green when alive and whitish-yellow when preserved, averages 1.2 mm., and the single amber-colored oil globule is about 0.6 mm. in diameter. Newly hatched striped bass prolarvae, which range from 2.9-3.7 mm. in total length, are relatively undeveloped and nearly transparent, with no mouth opening, unpigmented eyes, and a greatly enlarged yolk sac with the large oil globule projecting beyond the head. When 5-6 mm. long the yolk sac and oil globule are assimilated and the postlarvae I show advanced development of the internal anatomy. Although the fish is still transparent, scattered melanophores are found on the head and body and chromatophores in the eyes and the ventro-posterior edge of the body. Postlarvae transform to young between 7 and 10 mm. in length when the finfolds are lost except in the dorsal, anal and caudal regions. The largest fish in this group possess a well-formed skeleton with a full complement of 25 vertebrae. Between 10 and 20 mm. in length all fish are fully transformed, muscular tissue renders most of the internal structure obscure, and the myotomes, which generally correspond in number with the vertebrae, are no longer visible. At fish lengths of 20-30 mm. scales are found on all specimens, and with the exception of the pectoral fin-rays, a full complement of meristic structures is present in all other fins. At this stage the body is pigmented uniformly with small spots. Linear regressions between several dependent variables and the , independent variable of standard length indicate that the rate of development of head, eye. and snout to anus lengths is proportional to the length of the larvae and young. Body depth and standard length are non-linear among newly-hatched larvae. Hatchery-reared striped bass demonstrated a slow rate of growth, and were regarded as "stunted," when compared to growth rates observed in another study and field collections. Observations were also made on abnormal eggs and teratological larvae and young. Blue-sac disease is tentatively identified and described for the first time in larvae and pugnosed larvae and young are also described for the first time in striped bass.
Resumo:
In July 2006, a mandatory observer program was implemented to characterize the commercial reef fish fishery operating in the U.S. Gulf of Mexico. The primary gear types assessed included bottom longline and vertical line (bandit and handline). A total of 73,205 fish (183 taxa) were observed in the longline fishery. Most (66%) were red grouper, Epinephelus morio, and yellowedge grouper, E. flavolimbatus. In the vertical line fishery, 89,015 fish (178 taxa) were observed of which most (60%) were red snapper, Lutjanus campechanus, and vermilion snapper, Rhomboplites aurorubens. Based on surface observations of discarded under-sized target and unwanted species, the majority of fish were released alive; minimum assumed mortality was 23% for the vertical line and 24% for the bottom longline fishery. Of the individuals released alive in the longline fishery, 42% had visual signs of barotrauma stress (air bladder expansion/and or eyes protruding). In the vertical line fishery, 35% of the fish were released in a stressed state. Red grouper and red snapper size composition by depth and gear type were determined. Catch-per-unit-effort for dominant species in both fisheries, illustrated spatial differences in distribution between the eastern and western Gulf. Hot Spot Analyses for red grouper and red snapper identified areas with significant clustering of high or low CPUE values.
Resumo:
This article covers the biology and the history of the bay scallop habitats and fishery from Massachusetts to North Carolina. The scallop species that ranges from Massachusetts to New York is Argopecten irradians irradians. In New Jersey, this species grades into A. i. concentricus, which then ranges from Maryland though North Carolina. Bay scallops inhabit broad, shallow bays usually containing eelgrass meadows, an important component in their habitat. Eelgrass appears to be a factor in the production of scallop larvae and also the protection of juveniles, especially, from predation. Bay scallops spawn during the warm months and live for 18–30 months. Only two generations of scallops are present at any time. The abundances of each vary widely among bays and years. Scallops were harvested along with other mollusks on a small scale by Native Americans. During most of the 1800’s, people of European descent gathered them at wading depths or from beaches where storms had washed them ashore. Scallop shells were also and continue to be commonly used in ornaments. Some fishing for bay scallops began in the 1850’s and 1860’s, when the A-frame dredge became available and markets were being developed for the large, white, tasty scallop adductor muscles, and by the 1870’s commercial-scale fishing was underway. This has always been a cold-season fishery: scallops achieve full size by late fall, and the eyes or hearts (adductor muscles) remain preserved in the cold weather while enroute by trains and trucks to city markets. The first boats used were sailing catboats and sloops in New England and New York. To a lesser extent, scallops probably were also harvested by using push nets, picking them up with scoop nets, and anchor-roading. In the 1910’s and 1920’s, the sails on catboats were replaced with gasoline engines. By the mid 1940’s, outboard motors became more available and with them the numbers of fishermen increased. The increases consisted of parttimers who took leaves of 2–4 weeks from their regular jobs to earn extra money. In the years when scallops were abundant on local beds, the fishery employed as many as 10–50% of the towns’ workforces for a month or two. As scallops are a higher-priced commodity, the fishery could bring a substantial amount of money into the local economies. Massachusetts was the leading state in scallop landings. In the early 1980’s, its annual landings averaged about 190,000 bu/yr, while New York and North Carolina each landed about 45,000 bu/yr. Landings in the other states in earlier years were much smaller than in these three states. Bay scallop landings from Massachusetts to New York have fallen sharply since 1985, when a picoplankton, termed “brown tide,” bloomed densely and killed most scallops as well as extensive meadows of eelgrass. The landings have remained low, large meadows of eelgrass have declined in size, apparently the species of phytoplankton the scallops use as food has changed in composition and in seasonal abundance, and the abundances of predators have increased. The North Carolina landings have fallen since cownose rays, Rhinoptera bonsais, became abundant and consumed most scallops every year before the fishermen could harvest them. The only areas where the scallop fishery remains consistently viable, though smaller by 60–70%, are Martha’s Vineyard, Nantucket, Mass., and inside the coastal inlets in southwestern Long Island, N.Y.
Resumo:
The bigeye thresher shark (Alopias superciliosus, Lowe 1841) is one of three sharks in the family Alopiidae, which occupy pelagic, neritic, and shallow coastal waters throughout the altropics and subtropics (Gruber and Compagno, 1981; Castro, 1983). All thresher sharks possess an elongated upper caudal lobe, and the bigeye thresher shark is distinguished from the other alopiid sharks by its large upward-looking eyes and grooves on the top of the head (Bigelow and Schroeder, 1948). Our present understanding of the bigeye thresher shark is primarily based upon data derived from specimens captured in fisheries, including knowledge of its morphological features (Fitch and Craig, 1964; Stillwell and Casey, 1976; Thorpe, 1997), geographic range as far as it overlaps with fisheries (Springer, 1943; Fitch and Craig, 1964; Stillwell and Casey, 1976; Gruber and Compagno, 1981; Thorpe, 1997), age, growth and maturity (Chen et al., 1997; Liu et al., 1998), and aspects of its reproductive biology (Gilmore, 1983; Moreno and Moron, 1992; Chen et al., 1997).
Resumo:
Heteropneustes fossilis was induced bred for the first time in the agro-climatic conditions of Maharashtra, India. The embryonic development was completed within 16-18h after fertilisation. Head and tail ends were distinguishable after 3h and 11-12 somites were visible after 6-7h. The eggs started hatching after 14h of incubation. Average hatching time was 16-18h at 26 degrees C. In first day old pro-larva, notochord was deflected upwards, eyes were darkly pigmented and alimentary canal appeared. In fourth day old post-larva intestinal coiling could be seen and yolk was absorbed. Aerial respiration started by 8th day. The 10 day old post-larva was free swimming and fed voraciously attaining a length of 20 mm in 30 days.
Resumo:
In order to study the early developmental stages of Nandus nandus an experiment was conducted, where eggs and milt were obtained from the laboratory reared N nandus by stripping after 15 hours of 150 mg/kg body weight of carp PG extract injection. Then the eggs were fertilized in the laboratory and subsequent developmental stages were studied. First cleavage (two cell), four cell, eight cell, sixteen cell and multi cell stages were found 30, 50, 70, 105 and 160 minutes after fertilization respectively. Morula, early gastrula, middle gastrula, late gastrula and yolk plug stages were found 5, 8, 9, 11 and 13 hours after fertilization respectively. Hatching occurred within 20±2 hours after fertilization, and larvae were measured 1.60 mm in diameter. After one hour of hatching two melanophore bands were found at the caudal region of the body of the larvae. Eyes were first observed in l 0 hours, pectoral and pelvic fin buds appeared in 22 hours and well developed in 38 hours old larvae. Mouth cleft and brain lobes were visible when the larvae were 34 and 38 hours old respectively. Myomeres partially appeared in 16 hours, which were clearly visible in 74 hours old larvae. Larvae started wandering and searching for food after 56 hours of hatching. The yolk sac was completely absorbed when larvae became 62 hours old.
Resumo:
Mass mortality of Thai pangas (Pangasius hypophthalmus) is reported to be a big threat to monoculture of the species in Bangladesh. Twenty affected and twenty control Thai pangas ponds were investigated around Mymensingh district in order to identify the causes of pangas mortality. Sixty affected and sixty unaffected fish samples were examined and compared to find the fish-level variables associated with the disease. A range of haemorrhagic signs on snout, skin and fins were recorded during examination with naked eyes. Aeromonas spp. and Edwardsiella spp. were isolated from 87% and 80% of the affected fish, respectively. Even 4% of the seemingly healthy fish carried Aeromonas spp. on their skin. Among the four water quality parameters monitored, remarkably higher total ammonia (1.5 ppm) was found in water of the affected ponds compared to that of the unaffected ones (0.4 ppm). High ammonia in affected water caused by excessive organic decomposition and poor pond management might have reduced the immunity of fish, which predisposed them for bacterial invasion and consequent disease outbreak.
Resumo:
Aquatic macro-invertebrates encompass all those organisms that be seen with unaided eyes. Most macro-invertebrates are categorised as semi-aquatic in that they are aquatic in early stages, but live as terrestrial organisms as adults, while others like gastropods, bivalves, Oligochaetae, Hirudinae and ostracods are exclusively aquatic. Some of them such as mayflies lay eggs in water and subsequent stages also live in water until adulthood when they emerge to live a terrestrial life. In others, eggs are laid near the water, while some like members of Tendipedidae (midges) lay their eggs on the leaves of aquatic macrophytes and after hatching their larvae creep into water