210 resultados para Extinct species
em Aquatic Commons
Resumo:
The present paper reports the extraction of DNA from formalin-fixed Pontoporia blainvillei tissues. Following the Vachot and Monerot (1996) protocol, fragmented DNA (300-700bp) was extracted from more than 95% of liver and muscle samples. DNA yield in liver samples was significantly higher than in muscle samples (4.574 ± 1.169mg DNA/mg versus 0.808 ± 0.297mg DNA/mg). Similar results were obtained from nine other species of cetaceans and five species of pinnipeds. It is of special interest to have a method that allows the utilisation of museum specimens not originally preserved for genetic studies, which may include rarely available, declining or extinct species. SPANISH: El presente trabajo reporta la extracción de ADN a partir de tejidos formolizados de Pontoporia blainvillei. Siguiendo el protocolo de Vachot y Monerot (1996) se pudo extraer ADN degradado (300-700pb) en más del 95% de las muestras de hígado y músculo analizadas. El rendimiento en ADN fue significativamente mayor en muestras de hígado que en muestras de músculo (4.574 ± 1.169mg DNA/mg tejido húmedo versus 0.808 ± 0.297mg DNA/mg tejido húmedo). Resultados similares se obtuvieron en otras nueve especies de Cetáceos y cinco de Pinnípedos. Resulta de gran interés contar con un método que permita la utilización de especímenes depositados en museos y que no hayan sido originalmente colectados para estudios genéticos, incluyendo especies de difícil obtención, en franca declinación o extintas.
Resumo:
In 1988, the World Conservation Union (WCU) Red Book of Endangered Species listed hundreds of endemic fishes of Lake Victoria under a single heading - "ENDANGERED". Most of the endemic native food fishes are either endangered or extinct. However, a survey of the fauna of Lake Kanyaboli, revealed that a few remaining samples of these native fishes are actually thriving. These include several unidentified Haplochromis spp., Oreochromis esculentus and Oreochromis variabilis. As a result, a stock rehabilitation and management strategy has been designed to use Lake Kanyaboli and other small waterbodies as conservation 'Refugia' for endangered fish species of the larger Lake Victoria.
Resumo:
For purposes ofthe Endangered Species Act (ESA), a "species" is defined to include "any distinct population segment of any species of vertebrate fish or wildlife which interbreeds when mature. "Federal agencies charged with carrying out the provisions of the ESA have struggled for over a decade to develop a consistent approach for interpreting the term "distinct population segment." This paper outlines such an approach and explains in some detail how it can be applied to ESA evaluations of anadromous Pacific salmonids. The following definition is proposed: A population (or group of populations) will be considered "distinct" (and hence a "species ")for purposes of the ESA if it represents an evolutionarily significant unit (ESU) of the biological species. A population must satisfy two criteria to be considered an ESU: 1) It must be substantially reproductively isolated from other conspecific population units, and 2) It must represent an important component in the evolutionary legacy of the species. Isolation does not have to be absolute, but it must be strong enough to permit evolutionarily important differences to accrue in different population units. The second criterion would be met if the population contributes substantially to the ecological/genetic diversity of the species as a whole. Insights into the extent of reproductive isolation can be provided by movements of tagged fish, natural recolonization rates observed in other populations, measurements of genetic differences between populations, and evaluations of the efficacy of natural barriers. Each of these methods has its limitations. Identification of physical barriers to genetic exchange can help define the geographic extent of distinct populations, but reliance on physical features alone can be misleading in the absence of supporting biological information. Physical tags provide information about the movements of individual fish but not the genetic consequences of migration. Furthermore, measurements ofc urrent straying or recolonization rates provide no direct information about the magnitude or consistency of such rates in the past. In this respect, data from protein electrophoresis or DNA analyses can be very useful because they reflect levels of gene flow that have occurred over evolutionary time scales. The best strategy is to use all available lines of evidence for or against reproductive isolation, recognizing the limitations of each and taking advantage of the often complementary nature of the different types of information. If available evidence indicates significant reproductive isolation, the next step is to determine whether the population in question is of substantial ecological/genetic importance to the species as a whole. In other words, if the population became extinct, would this event represent a significant loss to the ecological/genetic diversity of thes pecies? In making this determination, the following questions are relevant: 1) Is the population genetically distinct from other conspecific populations? 2) Does the population occupy unusual or distinctive habitat? 3) Does the population show evidence of unusual or distinctive adaptation to its environment? Several types of information are useful in addressing these questions. Again, the strengths and limitations of each should be kept in mind in making the evaluation. Phenotypic/life-history traits such as size, fecundity, and age and time of spawning may reflect local adaptations of evolutionary importance, but interpretation of these traits is complicated by their sensitivity to environmental conditions. Data from protein electrophoresis or DNA analyses provide valuable insight into theprocessofgenetic differentiation among populations but little direct information regarding the extent of adaptive genetic differences. Habitat differences suggest the possibility for local adaptations but do not prove that such adaptations exist. The framework suggested here provides a focal point for accomplishing the majorgoal of the Act-to conserve the genetic diversity of species and the ecosystems they inhabit. At the same time, it allows discretion in the listing of populations by requiring that they represent units of real evolutionary significance to the species. Further, this framework provides a means of addressing several issues of particular concern for Pacific salmon, including anadromous/nonanadromous population segments, differences in run-timing, groups of populations, introduced populations, and the role of hatchery fish.
Fish species diversity in the Victoria and Kyoga lake basins: their conservation and sustainable use
Resumo:
Introduction of exotic fish species especially the Nile perch Lates niloticus, is believed to be responsible for the decline of fish species diversity in lakes Victoria, Kyoga and Nabugabo.About 60% of the haplochromine cichlids are thought to have become extinct from L. Victoria due to predation by the Nile perch. However there are many lakes satelite to the lakes Victoria and Kyoga basins which still have fish fauna similar to that of the main lakes. many of the satellite lakes are separated from the main lakes in, which Nile perch was introduced by extensive swamps that provide a barrier to Nile perch .A survey was carried out in a number of these satelite lakes and an inventory made of existing fish species. Their distribution and relative abundances were also determined. The lakes studied included Nawampasa, Nakuwa,Kawi Lamwa Gigate, Nyaguo, Agu, Nabugabo. Kayanja, Kaytigi, Mburo, Kachera and Wamala.Some habitats within the main lakes Victoria and Kyoga, especially those with rocky outcrops· and macrophyte cover that provide refugia for endangered species from Nile perch,were also surveyed) Various stations along the River Nile were also sampled to quantify the fish species that are still resent. Kyoga minor lakes were found to have the highest number of fish species especially of haplochromine cichlids. Many haplochromine trophic groups that were thought to be extinct from 1. Victoria still occur in these lakes.!Some of the satellite lakes, especially lakes Kayugi, Mburo and Kachera still contain .healili populations of oreochromis. I esculentus that could be used as brood stock in fish farming. Many of these lakes should .I ( I therefore be protected for conservation offish species diversity
Resumo:
Since January, 1911, Mr. E. A. Goldman, of the Biological Survey, U.S.Department of Agriculture, has been detailed to the Smithsonian Biological Survey of the Panama Canal Zone to collect mammals and birds in the Canal Zone and adjacent parts of Panama... (Document contains 4 pages)
Resumo:
Two new species of Monasa are among the interesting birds collected by E. A. Goldman while working on the Smithsonian Biological Survey of Panama during the winter of 1911. They were collected at the same locality on the base of Cerro Azul, northwest from Chepo, and only a single specimen of each was obtained. No others were seen during the entire season in the Canal Zone and adjacent territory...(Document contains 4 pages)
Resumo:
The first of January, 1912, E. A. Goldman, of the Biological Survey, Department of Agriculture, was again detailed on the Smithsonian Biological Survey of the Canal Zone. He returned to Panama in January and remained there until the last of June passing most of this period in collecting birds and mammals on the slopes of Mount Pirri on the Pacific side of eastern Panama, near the Colombian border...(Document contains 27 pages)
Resumo:
In the early part of 1911 a collection of 368 mammals was made by me while engaged in the biological survey of the Canal Zone, and adjacent parts of Panama, undertaken by the Smithsonian Institution in cooperation with several government departments, including the War Department and Department of Agriculture. This collection, representing between 40 and 50 genera, includes 12 new species and subspecies which are here published in advance of a general report on the mammals of the region...(Document contains 13 pages)
Resumo:
These collections were made by Meek and Hildebrand, in connection with their work on fishes in the seasons of 1911 and 1912, by Goldman in 1912, and by Marsh who was present in Panama for four weeks in 1912 for the express purpose of making such collections. Most of the collections were made within the limits of the Canal Zone. A few collections were made in eastern Colombia, some on Rio Bayana and its tributaries, some on the Chagres and Trinidad outside the Zone and some in the neighborhood of Chorrera and of old Panama... (Document has 33 pages)
Resumo:
The fishes described in the following pages were collected by the authors in the fresh waters of Panama, while engaged in field work on the Biological Survey of the Canal Zone; the ichthyological work of which is being conducted cooperatively by the Smithsonian Institution, the Field Museum of Natural History and the Bureau of Fisheries. A complete account of all the fishes collected during the past two years on this survey is in the course of preparation. (Document contains 16 pages)
Resumo:
Species selectivity of the aquatic herbicide dipotassium salt of endothall (Aquathol® K) was evaluated on plant species typically found in northern latitude aquatic plant communities. Submersed species included Eurasian watermilfoil (Myriophyllum spicatum L.), curlyleaf pondweed (Potamogeton crispus L.), Illinois pondweed (Potamogeton illinoensis Morong.), sago pondweed (Potamogeton pectinatus L.), coontail (Ceratophyllum demersum L.), elodea (Elodea canadensis Michx.) and wildcelery (Vallisneria americana L.). Emergent and floating-leaf plant species evaluated were cattail (Typha latifolia L.), smartweed (Polygonum hydropiperoides Michx.), pickerelweed (Pontederia cordata L.) and spatterdock (Nuphar advena Aiton). The submersed species evaluations were conducted in 7000 L mesocosm tanks, and treatment rates included 0, 0.5 1.0, 2.0, and 4.0 mg/L active ingredient (ai) endothall (dipotassium salt of endothall). The exposure period consisted of a 24-h flow through half-life for 7 d. The cattail and smartweed evaluation was conducted in 860 L mesocosm tanks, and the spatterdock and pickerelweed evaluations were conducted in 1600 L mesocosm tanks. Treatment rates for the emergent and floating-leafed plant evaluations included 0, 0.5, 2.0 and 4.0 mg/L ai endothall, and the exposure period consisted of removing and replacing half the water from each tank, after each 24 h period for a duration of 120 h. Biomass samples were collected at 3 and 8 weeks after treatment (WAT). Endothall effectively controlled Eurasian watermilfoil and curlyleaf pondweed at all of the application rates, and no significant regrowth was observed at 8 WAT. Sago pondweed, wildcelery, and Illinois pondweed biomass were also significantly reduced following the endothall application, but regrowth was observed at 8 WAT. Coontail and elodea showed no effects from endothall application at the 0.5, 1.0, and 2.0 mg/L application rates, but coontail was controlled at 4.0 mg/L rate. Spatterdock, pickerelweed, cattail, and smartweed were not injured at any of the endothall application rates.
Resumo:
Many Central Florida lakes, particularly those in the Kissimmee River watershed, are maintained 0.5 to 1.0 m lower than historic (pre-1960) levels during the summer hurricane season for flood control purposes. These lower water levels have allowed proliferation and formation of dense monotypic populations of pickerelweed ( Pontederia cordata L.) and other broadleaf species that out compete more desirable native grasses (Hulon, pers. comm., 2002). Due to the limited availability of data on the effects of metsulfuron methyl on wetland plants, particularly in Florida, the present study was carried out with the objective of testing its phytotoxicity on six wetland species, to determine the feasibility of its use for primary pickerelweed control.
Resumo:
Hydrilla ( Hydrilla verticillata (L.f.) Royle), an invasive aquatic weed, continues to spread to new regions in the United States. Two biotypes, one a female dioecious and the other monoecious have been identified. Management of the spread of hydrilla requires understanding the mechanisms of introduction and transport, an ability to map and make available information on distribution, and tools to distinguish the known U.S. biotypes as well as potential new introductions. Review of the literature and discussions with aquatic scientists and resource managers point to the aquarium and water garden plant trades as the primary past mechanism for the regional dispersal of hydrilla while local dispersal is primarily carried out by other mechanisms such as boat traffic, intentional introductions, and waterfowl. The Nonindigenous Aquatic Species (NAS) database is presented as a tool for assembling, geo-referencing, and making available information on the distribution of hydrilla. A map of the current range of dioecious and monoecious hydrilla by drainage is presented. Four hydrilla samples, taken from three discrete, non-contiguous regions (Pennsylvania, Connecticut, and Washington State) were examined using two RAPD assays. The first, generated using primer Operon G17, and capable of distinguishing the dioecious and monoecious U.S. biotypes, indicated all four samples were of the monoecious biotype. Results of the second assay using the Stoffel fragment and 5 primers, produced 111 markers, indicated that these samples do not represent new foreign introductions. The differences in the monoecious and dioecious growth habits and management are discussed.
Resumo:
The following decriptions [sic] of new forms of Microlepidoptera are published in advance of proposed papers, dealing with the lepidopterous fauna of Panama as a whole, based on material collected by the writer as a member of the Smithsonian Biological Survey of the Panama Canal Zone during the first half of the year 1911. ... (PDF contains 13 pages)