10 resultados para Extent (Writ)

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: This report summarizes the results of NOAA's sediment toxicity, chemistry, and benthic community studies in the Chesapeake Bay estuary. As part of the National Status and Trends (NS&T) Program, NOAA has conducted studies to determine the spatial extent and severity of chemical contamination and associated adverse biological effects in coastal bays and estuaries of the United States since 1991. Sediment contamination in U.S. coastal areas is a major environmental issue because of its potential toxic effects on biological resources and often, indirectly, on human health. Thus, characterizing and delineating areas of sediment contamination and toxicity and demonstrating their effect(s) on benthic living resources are viewed as important goals of coastal resource management. Benthic community studies have a history of use in regional estuarine monitoring programs and have been shown to be an effective indicator for describing the extent and magnitude of pollution impacts in estuarine ecosystems, as well as for assessing the effectiveness of management actions. Chesapeake Bay is the largest estuarine system in the United States. Including tidal tributaries, the Bay has approximately 18,694 km of shoreline (more than the entire US West Coast). The watershed is over 165,000 km2 (64,000 miles2), and includes portions of six states (Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia) and the District of Columbia. The population of the watershed exceeds 15 million people. There are 150 rivers and streams in the Chesapeake drainage basin. Within the watershed, five major rivers - the Susquehanna, Potomac, Rappahannock, York and James - provide almost 90% of the freshwater to the Bay. The Bay receives an equal volume of water from the Atlantic Ocean. In the upper Bay and tributaries, sediments are fine-grained silts and clays. Sediments in the middle Bay are mostly made of silts and clays derived from shoreline erosion. In the lower Bay, by contrast, the sediments are sandy. These particles come from shore erosion and inputs from the Atlantic Ocean. The introduction of European-style agriculture and large scale clearing of the watershed produced massive shifts in sediment dynamics of the Bay watershed. As early as the mid 1700s, some navigable rivers were filled in by sediment and sedimentation caused several colonial seaports to become landlocked. Toxic contaminants enter the Bay via atmospheric deposition, dissolved and particulate runoff from the watershed or direct discharge. While contaminants enter the Bay from several sources, sediments accumulate many toxic contaminants and thus reveal the status of input for these constituents. In the watershed, loading estimates indicate that the major sources of contaminants are point sources, stormwater runoff, atmospheric deposition, and spills. Point sources and urban runoff in the Bay proper contribute large quantities of contaminants. Pesticide inputs to the Bay have not been quantified. Baltimore Harbor and the Elizabeth River remain among the most contaminated areas in the Unites States. In the mainstem, deep sediment core analyses indicate that sediment accumulation rates are 2-10 times higher in the northern Bay than in the middle and lower Bay, and that sedimentation rates are 2-10 times higher than before European settlement throughout the Bay (NOAA 1998). The core samples show a decline in selected PAH compounds over the past several decades, but absolute concentrations are still 1 to 2 orders of magnitude above 'pristine' conditions. Core data also indicate that concentrations of PAHs, PCBs and, organochlorine pesticides do not demonstrate consistent trends over 25 years, but remain 10 times lower than sediments in the tributaries. In contrast, tri-butyl-tin (TBT) concentrations in the deep cores have declined significantly since it=s use was severely restricted. (PDF contains 241 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirty sites were sampled in southern Biscayne Bay and Manatee Bay in December 1999 to determine the extent of toxicity in sediments. Analyses and assays included: pesticides and phenols in seawater; chemical contaminants in sediment; amphipod mortality, HRGS P450, sea urchin sperm fertilization and embryology, MicrotoxTM, MutatoxTM, grass shrimp AChE and juvenile clam mortality assays; sea urchin sperm, amphipod and oyster DNA damage; and benthic community assessment. Sediment sites near the mouth of canals showed evidence of contamination. Contaminant plumes and associated toxicity do not appear to extend seaward of the mouth of the canals in an appreciable manner. Concentrations of contaminants in the sediments in open areas of Biscayne and Manatee Bays are generally low. (PDF contains 140 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toxicity of sediments in Biscayne Bay and many adjoining tributaries was determined as part of a bioeffects assessments program managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. The survey was designed to characterize sediment quality throughout the greater Biscayne Bay area. Surficial sediment samples were collected during 1995 and 1996 from 226 randomly-chosen locations throughout nine major regions. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts; and reduced reproductive success in marine copepods exposed to solid-phase sediments. Contamination and toxicity were most severe in several peripheral canals and tributaries, including the lower Miami River, adjoining the main axis of the bay. In the open basins of the bay, chemical concentrations and toxicity generally were higher in areas north of the Rickenbacker Causeway than south of it. Sediments from the main basins of the bay generally were less toxic than those from the adjoining tributaries and canals. The different toxicity tests, however, indicated differences in severity, incidence, spatial patterns, and spatial extent in toxicity. The most sensitive test among those performed on all samples, a bioassay of normal morphological development of sea urchin embryos, indicated toxicity was pervasive throughout the entire study area. The least sensitive test, an acute bioassay performed with a benthic amphipod, indicated toxicity was restricted to a very small percentage of the area. Both the degree and spatial extent of chemical contamination and toxicity in this study area were similar to or less severe than those observed in many other areas in the U.S. The spatial extent of toxicity in all four tests performed throughout the bay were comparable to the “national averages” calculated by NOAA from previous surveys conducted in a similar manner. Several trace metals occurred in concentrations in excess of those expected in reference sediments. Mixtures of substances, including pesticides, petroleum constituents, trace metals, and ammonia, were associated statistically with the measures of toxicity. Substances most elevated in concentration relative to numerical guidelines and associated with toxicity included polychlorinated biphenyls, DDT pesticides, polynuclear aromatic hydrocarbons, hexachloro cyclohexanes, lead, and mercury. These (and other) substances occurred in concentrations greater than effects-based guidelines in the samples that were most toxic in one or more of the tests. (PDF contains 180 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toxic chemicals can enter the marine environment through numerous routes: stormwater runoff, industrial point source discharges, municipal wastewater discharges, atmospheric deposition, accidental spills, illegal dumping, pesticide applications and agricultural practices. Once they enter a receiving system, toxicants often become bound to suspended particles and increase in density sufficiently to sink to the bottom. Sediments are one of the major repositories of contaminants in aquatic envronments. Furthermore, if they become sufficiently contaminated sediments can act as sources of toxicants to important biota. Sediment quality data are direct indicators of the health of coastal aquatic habitats. Sediment quality investigations conducted by the National Oceanic and Atmospheric Administration (NOAA) and others have indicated that toxic chemicals are found in the sediments and biota of some estuaries in South Carolina and Georgia (NOAA, 1992). This report documents the toxicity of sediments collected within five selected estuaries: Savannah River, Winyah Bay, Charleston Harbor, St. Simons Sound, and Leadenwah Creek (Figure 1). (PDF contains 292 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents an overview of the state of aquatic resources in the Philippines, its performance and importance in the Philippine economy, and explores the situation of poverty in the "aquatic resources sector." The report describes the policy environment that guides the action of key actors in the sector. The report also provides a general analysis of some trends in relation to factors that keep the poor from participating and benefiting from aquatic resource management, based on the perspectives of the authors. (PDF contains 135 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations of the rearrangement of material in Neuwerk/Scharhom flat showed that with the exception of the western border/edge and the parts of the Elbe and Oste shores/banks which lie most seawards, the entire mudflat area is only infrequently exposed to strong hydraulic forces. Only in extreme conditions, which on average occur rarely more than once a year, would the mudflats be severely affected. This partial translation provides the summary of the original article only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focusses on the plants in the open parts of the lake - mostly aquatic charophytes and mosses, in what are called in Lake Sevan (Armenia), the ”zones of chara and moss”. Distribution and other ecological conditions are reviewed. Quantity of chara in the littoral zone of lake Sevan is provided

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mean extent of trial of an improved design of lobster trap by 45 fishermen was 26.46. The cost of local traps and number of seasons used were both significantly negatively associated with the extent of trials; its relationship with the annual catch by indigenous trap approached significance. These three variables accounted for 59% of the variance in the extent of trial.