32 resultados para Exposure intensity
em Aquatic Commons
Resumo:
The rule of light on the timing of maturation and spawning in tropical and subtropical regions is not clear well, because the reproductive cycle in these systems is lunar synchronized. In this study, thus, the effects of different light regimes were investigated on maturational progress of whitespotted rabbitfish, Siganus sutor, the commercial species in Persian Gulf and Oman Sea. During prespawning season, 50 adult fish were randomly divided into ten 300-l tanks (n=5). The fish in control tank received indoor light condition and the fish in each other tanks were exposed to nine different combinations of photoperiod (8L: 16D, 12L: 12D, 16L: 8D) and light intensity (1000, 2000, 3000 lux). After 60 days, GSI and HSI values, serum levels of estradiol (E2), testosterone (T), 17-α hydroxyprogestrone (OHP), calcium (Ca2+) and gonad histology were evaluated for females and males. In females the GSI mean values of exposed fish increased in comparison with control except for fish were kept under 8L, 2000 lux (tank 8). These differences were significant only for fishes in tank 7 (8L, 3000 lux). In the cases of HSI, the results were converse, so that, the most of thanks showed significant decreasing than fishes reared under indoor condition. Morphology and histology study of Ovaries showed three developmental phases including 3, 4 and chiefly 5 that were parallel with GSI values. Fortheremore the serum levels of E2 was recorded between 0.54-15.8 ng/ml in different fish and their mean values were lower than control in all treatmants (P> 0.05). In males, the similar results were obtained. The GSI and HSI mean values in experimental regimes compared with control were upper and lower, respectively, except for fishes were reared in tank 1 (16L, 3000 lux). Testes histology of fishes were reared under different regimes showed signs of stage 5, since no blood vessels observed and thick milt exuded on slight pressure. The mean values of testosterone consentration in fishes were kept in tanks 1 and 6 (12L, 1000 lux) were higher and in other ones were lower than control group. It is also noted that the OHP and Ca2+ had diverse results including increasing and decreasing mean values than control. So, these factors contrary to E2 and T were not suitable to evaluation of maturity in both sexes. On the basis of ovarian structure in stage 5, oocyte development pattern in this species was group synchronous. So, increased mean of GSI versus decreased values of HSI, E2 and perhaps Ca2+ were the signs of improved maturation. But in males, reduced levels of T and similarity of testes morphology in all samples caused that GSI mean value was the only indicator for differentiating among treatments. These findings suggest that alternations were used in light regimes have been the reason of improved maturity in all treatments except fishes reared in tank 8. The ١٠٧ rule of light intensity on induction of maturity was cleared by comparision between fishes in tanks 4, 5, 6 and control group. Because day length was the same whereas fishes in tanks 4, 5 and 6 were exposed to increased light intensity compared with control. This fact verified by results was obtained from fishes in tanks 9 and especially 7, since photoperiod in this group was lower than control. So, higher intensity was considered as the reason of alternations. Contrasting with indoor condition, Induced maturity was also cleared for fishes were kept in tanks 1, 2 and 3, where both of light duration and intensity were increased. But, the rule of photoperiod was individually demonstrated when obtained results were compared with similar light intensities in other treatments. In conclusion, with comparison among different light regimes it is declared that siganids were kept under light condition of tank 2 including 16h light duration combined with 2000 lux intensity showed the best signs of sexual maturation in both sexes. On the basis of this study, setting up the spring light condition during prespawning season induces maturation in withspotted rabbitfish. This improvement not only by influence of photoperiod or light intensity, separately, but obtained through interaction between them. Thus, determination of threshold and resistance to light be recommended before exposure, although using proper regime during suitable time are necessary to achieve purposes considerably.
Resumo:
The proportion of torpedograss tissue exposed to glyphosate at application rates of 0.28, 0.56, 1.12, 2.24, and 4.48 kg/ha affected control as measured by regrowth. The effect of tissue exposure was more pronounced as application rate decreased. This study suggests that higher rates of glyphosate need to be used during higher water levels, when less torpedograss tissue is exposed to herbicide spray and lower rates may be used during periods of low water levels. Addition of the water conditioning agent Quest (R) (0.25% v/v) to glyphosate spray mixtures diminished the influence of simulated rain events following glyphosate application. Twelve other adjuvants did not influence the effect of simulated rain events.
Resumo:
(pdf contains 265 pages)
Resumo:
This report describes the working of National Centers for Coastal Ocean Service (NCCOS) Wave Exposure Model (WEMo) capable of predicting the exposure of a site in estuarine and closed water to local wind generated waves. WEMo works in two different modes: the Representative Wave Energy (RWE) mode calculates the exposure using physical parameters like wave energy and wave height, while the Relative Exposure Index (REI) empirically calculates exposure as a unitless index. Detailed working of the model in both modes and their procedures are described along with a few sample runs. WEMo model output in RWE mode (wave height and wave energy) is compared against data collected from wave sensors near Harkers Island, North Carolina for validation purposes. Computed results agreed well with the wave sensors data indicating that WEMo can be an effective tool in predicting local wave energy in closed estuarine environments. (PDF contains 31 pages)
Resumo:
Analyses of blood and liver samples from live captured sea otters and liver samples from beachcast sea otter carcasses off the remote Washington coast indicate relatively low exposure to contaminants, but suggest that even at the low levels measured, exposure may be indicated by biomarker response. Evidence of pathogen exposure is noteworthy - infectious disease presents a potential risk to Washington sea otters, particularly due to their small population size and limited distribution. During 2001 and 2002, 32 sea otters were captured, of which 28 were implanted with transmitters to track their movements and liver and blood samples were collected to evaluate contaminant and pathogen exposure. In addition, liver samples from fifteen beachcast animals that washed ashore between 1991 and 2002 were analyzed to provide historical information and a basis of reference for values obtained from live otters. The results indicate low levels of metals, butyltins, and organochlorine compounds in the blood samples, with many of the organochlorines not detected except polychlorinated biphenyls (PCBs), and a few aromatic hydrocarbons detected in the liver of the live captured animals. Aliphatic hydrocarbons were measurable in the liver from the live captured animals; however, some of these are likely from biogenic sources. A significant reduction of vitamin A storage in the liver was observed in relation to PCB, dibutyltin and octacosane concentration. A significant and strong positive correlation in vitamin A storage in the liver was observed for cadmium and several of the aliphatic hydrocarbons. Peripheral blood mononuclear cell (PBMC) cytochrome P450 induction was elevated in two of 16 animals and may be potentially related to aliphatic and aromatic hydrocarbon exposure. Mean concentration of total butyltin in the liver of the Washington beach-cast otters was more than 15 times lower than the mean concentration reported by Kannan et al. (1998) for Southern sea otters in California. Organochlorine compounds were evident in the liver of beach-cast animals, despite the lack of large human population centers and development along the Washington coast. Concentrations of PCBs and chlordanes (e.g., transchlordane, cis-chlordane, trans-nonachlor, cis-nonachlor and oxychlordane) in liver of Washington beach-cast sea otters were similar to those measured in Aleutian and California sea otters, excluding those from Monterey Bay, which were higher. Mean concentrations of 1,1,1,- trichloro-2,2-bis(p-chlorophyenyl)ethanes (DDTs) were lower, and mean concentrations of cyclohexanes (HCH, e.g., alpha BHC, beta BHC, delta BHC and gamma BHC) were slightly higher in Washington beach-cast otters versus those from California and the Aleutians. Epidemiologically, blood tests revealed that 80 percent of the otters tested positive for morbillivirus and 60 percent for Toxoplasma, the latter of which has been a significant cause of mortality in Southern sea otters in California. This is the first finding of positive morbillivirus titers in sea otters from the Northeast Pacific. Individual deaths may occur from these diseases, perhaps more so when animals are otherwise immuno-compromised or infected with multiple diseases, but a population-threatening die-off from these diseases singly is unlikely while population immunity remains high. The high frequency of detection of morbillivirus and Toxoplasma in the live otters corresponds well with the cause of death of stranded Washington sea otters reported herein, which has generally been attributable to infectious disease. Washington’s sea otter population continues to grow, with over 1100 animals currently inhabiting Washington waters; however, the rate of growth has slowed over recent years. The population has a limited distribution and has not yet reached its carrying capacity and as such, is still considered at high risk to catastrophic events. (PDF contains 189 pages)
Resumo:
Thirteen hundred and seventy-three striped bass, Marone saxatilis, were collected from the San Francisco Bay-Delta area to correlate host diet with parasitic infections and to determine the prevalence, intensity, longevity, and persistence of larval Anisakis sp. nematodes and the metacestode Lacistorhynchus tenuis. There is an increase in the prevalence and intensity of Anisakis sp. and in the intensity of L. tenuis with increase of age of the host. These increases are probably related to the diet and the persistence of tbe parasites. The infections of both species are overdispersed. San Francisco Bay striped bass are an incompatible host for both species of parasites. Degenerated Anisakis sp. will remain in lhe host for at least 8 months and L. tenuis metacestodes for 22 months. The occurrence of several other species of parasites and a tumor are also reported. (PDF file contains 10 pages.)
Resumo:
Climate change has rapidly emerged as a significant threat to coastal areas around the world. While uncertainty regarding distribution, intensity, and timescale inhibits our ability to accurately forecast potential impacts, it is widely accepted that changes in global climate will result in a variety of significant environmental, social, and economic impacts. Coastal areas are particularly vulnerable to the effects of climate change and the implications of sea-level rise, and coastal communities must develop the capacity to adapt to climate change in order to protect people, property, and the environment along our nation’s coasts. The U.S. coastal zone is highly complex and variable, consisting of several regions that are characterized by unique geographic, economic, social and environmental factors. The degree of risk and vulnerability associated with climate change can vary greatly depending on the exposure and sensitivity of coastal resources within a given area. The ability of coastal communities to effectively adapt to climate change will depend greatly on their ability to develop and implement feasible strategies that address unique local and regional factors. A wide variety of resources are available to assist coastal states in developing their approach to climate change adaptation. However, given the complex and variable nature of the U.S. coastline, it is unlikely that a single set of guidelines can adequately address the full range of adaptation needs at the local and regional levels. This panel seeks to address some of the unique local and regional issues facing coastal communities throughout the U.S. including anticipated physical, social, economic and environmental impacts, existing resources and guidelines for climate change adaptation, current approaches to climate change adaptation planning, and challenges and opportunities for developing adaptation strategies. (PDF contains 4 pages)
Resumo:
Understanding fluctuations in tropical cyclone activity along United States shores and abroad becomes increasingly important as coastal managers and planners seek to save lives, mitigate damage, and plan for resilience in the face of changing storminess and sea-level rise. Tropical cyclone activity has long been of concern to coastal areas as they bring strong winds, heavy rains, and high seas. Given projections of a warming climate, current estimates suggest that not only will tropical cyclones increase in frequency, but also in intensity (maximum sustained winds and minimum central pressures). An understanding of what has happened historically is an important step in identifying potential future changes in tropical cyclone frequency and intensity. The ability to detect such changes depends on a consistent and reliable global tropical cyclone dataset. Until recently no central repository for historical tropical cyclone data existed. To fill this need, the International Best Track Archive for Climate Stewardship (IBTrACS) dataset was developed to collect all known global historical tropical cyclone data into a single source for dissemination. With this dataset, a global examination of changes in tropical cyclone frequency and intensity can be performed. Caveats apply to any historical tropical cyclone analysis however, as the data contributed to the IBTrACS archive from various tropical cyclone warning centers is still replete with biases that may stem from operational changes, inhomogeneous monitoring programs, and time discontinuities. A detailed discussion of the difficulties in detecting trends using tropical cyclone data can be found in Landsea et al. 2006. The following sections use the IBTrACS dataset to show the global spatial variability of tropical cyclone frequency and intensity. Analyses will show where the strongest storms typically occur, the regions with the highest number of tropical cyclones per decade, and the locations of highest average maximum wind speeds. (PDF contains 3 pages)
Resumo:
The purpose of this work was the study of phytoplankton production of the salt lakes of the Steppe region of Crimea, during the vegetative period of 1974. From May to October Sakskoe and Sasyk Lakes were examined, and from August to October - Moinakskoe Lake. The density of the salt water was measured and the intensity of photosynthesis was determined. From the data presented, it is apparent that the intensity of photosynthesis in Sakskoe and Sasyk Lakes, on average, is extremely high.
Resumo:
The aim of this study was to develop a short-term genotoxicity assay for monitoring the marine environment for mutagens. Based on the developing eggs and embryos of the marine mussel Mytilus edulis, an important pollution indicator species, the test employs the sensitive sister chromatid exchange (SCE) technique as its end-point, and exploits the potential of mussel eggs to accumulate mutagenic pollutants from the surrounding sea water. Mussel eggs take up to 6 months to develop while in the gonad, which provides scope for DNA damage to be accumulated over an extended time interval; chromosome damage is subsequently visualised as SCEs in 2-cell-stage embryos after these have been spawned in the laboratory. Methods which measure biological responses to pollutant exposure are able to integrate all the factors (internal and external) which contribute to the exposure. The new cytogenetic assay allows the effects of adult exposure to be interpreted in cells destined to become part of the next generation.
Resumo:
A decade-long time series recorded in southern Monterey Bay, California demonstrates that the shallow, near-shore environment (17 m depth) is regularly inundated with pulses of cold, hypoxic and low pH water. During these episodes, oxygen can drop to biologically threatening levels, and pH levels were lower than expected. Weekly water chemistry monitoring revealed that the saturation state of aragonite (the more soluble form of calcium carbonate) was often below saturation and had a moderate positive relationship with pH, however, analytical and human error could be high. Pulses of hypoxia and low pH water with the greatest intensity arise at the onset of the spring upwelling season, and fluctuations are strongly semidurnal (tidal) and diurnal. Arrival of cold, hypoxic water on the inner shelf typically occurs 3 days after the arrival of a strong upwelling event and appears to be driven by upwelling modulated by internal tidal fluctuations. I found no relationship between the timing of low-oxygen events and the diel solar cycle nor with terrestrial nutrient input. These observations are consistent with advection of hypoxic water from the deep, offshore environment where water masses experience a general decline of temperature, oxygen and pH with depth, and inconsistent with biochemical forcing. Comparisons with concurrent temperature and oxygen time series taken ~20 km away at the head of the Monterey Canyon show similar patterns but even more intense hypoxic events due to stronger semidiurnal forcing there. Analysis of the durations of exposure to low oxygen levels establishes a framework for assessing the ecological relevance of these events. Increasing oceanic hypoxia and acidification of both surface and deep waters may increase the number, intensity, duration and spatial extent of future intrusions along the Pacific coast. Evaluation of the resiliency of nearshore ecosystems such as kelp forests, rocky reefs and sandy habitats, will require consideration of these events.
Resumo:
Millions of crabs are sorted and discarded in freezing conditions each year in Alaskan fisheries for Tanner crab (Chionoecetes bairdi) and snow crab (C. opilio). However, cold exposures vary widely over the fishing season and among different vessels, and mortalities are difficult to estimate. A shipboard experiment was conducted to determine whether simple behavioral observations can be used to evaluate crab condition after low-temperature exposures. Crabs were systematically subjected to cold in seven different exposure treatments. They were then tested for righting behavior and six different ref lex actions and held to monitor mortality. Crabs lost limbs, showed ref lex impairment, and died in direct proportion to increases in cold exposure. Righting behavior was a poor predictor of mortality, whereas reflex impairment (scored as the sum of reflex actions that were lost) was an excellent predictor. This composite index could be measured quickly and easily in hand, and logistic regression revealed that the relationship between reflex impairment and mortality correctly predicted 80.0% of the mortality and survival for C. bairdi, and 79.4% for C. opilio. These relationships provide substantial improvements over earlier approaches to mortality estimation and were independent of crab size and exposure temperature.
Resumo:
Demersal fishes hauled up from depth experience rapid decompression. In physoclists, this can cause overexpansion of the swim bladder and resultant injuries to multiple organs (barotrauma), including severe exophthalmia (“pop-eye”). Before release, fishes can also be subjected to asphyxia and exposure to direct sunlight. Little is known, however, about possible sensory deficits resulting from the events accompanying capture. To address this issue, electroretinography was used to measure the changes in retinal light sensitivity, flicker fusion frequency, and spectral sensitivity in black rockfish (Sebastes melanops) subjected to rapid decompression (from 4 atmospheres absolute [ATA] to 1 ATA) and Pacific halibut (Hippoglossus stenolepis) exposed to 15 minutes of simulated sunlight. Rapid decompression had no measurable influence on retinal function in black rockfish. In contrast, exposure to bright light significantly reduced retinal light sensitivity of Pacific halibut, predominately by affecting the photopigment which absorbs the green wavelengths of light (≈520–580 nm) most strongly. This detriment is likely to have severe consequences for postrelease foraging success in green-wavelength-dominated coastal waters. The visual system of Pacific halibut has characteristics typical of species adapted to low light environments, and these characteristics may underlie their vulnerability to injury from exposure to bright light.
Resumo:
Adult horseshoe crabs (Limulus polyphemus) are the preferred bait in the U.S. east coast whelk pot fishery, but their harvest is being restricted because of severe population declines in the Chesapeake and Delaware bays. To identify other baits, the activity in the pallial nerve of whelks was determined during exposure of the osphradium to odorant solutions prepared from horseshoe crab eggs, horseshoe crab hemolymph, and hard clam (Mercenaria mercenaria) tissue. All three elicited significant responses; bait based on them may provide an alternative to the use of adult horseshoe crabs, although extensive behavioral testing remains to be done. Channeled whelk did not respond to molecular weight fractions (>3 kDa and <3 kDa) prepared from horseshoe crab egg odorant solutions but did respond when the molecular weight fractions were recombined. Whelks appear to have broadly tuned chemoreceptors and manufactured baits may need to mimic the complex mixture of odorants derived from natural sources.
Resumo:
Examination of 203 adult bluefish (Pomatomus saltatrix) from Long Island, New York, in 2002 and 2003 and 66 from the Outer Banks, North Carolina, in 2003 revealed the presence of dracunculoid nematodes (Philometra saltatrix) in the ovaries of female fish. Percent prevalence reached 88% in July and then decreased after the peak of the spawning season. Bluefish contained up to 100 parasites per fish. Infection was associated with a range of disorders, including hemorrhage, inf lammation, edema, prenecrotic and necrotic changes, and follicular atresia, that may prevent proper development of oocytes and probably affect bluefish fecundity. Historical occurrences, life cycle, and geographical distribution of this nematode remain largely unknown, but may play important roles in recruitment processes of bluefish.