7 resultados para Exploratory factor analysis

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was conducted in 54 wetlands of 13 districts of Assam, India to evaluate the causes of fish depletion. Twenty-two variables were considered for the study. Seven factors were extracted through factor analysis (Principal Component Analysis) based on Eigen Value Criteria of more than one. These seven factors together accounted for 69.3% of the total variance. Based on the characteristics of the variables, all the factors were given descriptive names. These variables can be used to measure the extent of management deficiency of the causes of fish depletion in the wetlands. The factors are management deficiency, organic load interference, catchment condition, extrinsic influence, fishermen’s ignorance, external environment and aquaculture program. Management deficiency accounted for a substantial portion of the total variance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of planktonic foraminiferal assemblages from 19 stations in the neritic and oceanic regions off the Coromandel Coast, Bay of Bengal has been made using a multivariate statistical method termed as factor analysis. On the basis of abundance, 17 foraminiferal species, species were clustered into 5 groups with row normalisation and varimax rotation for Q-mode factor analysis. The 19 stations were also grouped into 5 groups with only 2 groups statistically significant using column normalisation and varimax rotation for R-mode analysis. This assemblage grouping method is suitable because groups of species/stations can explain the maximum amount of variation in them in relation to prevailing environmental conditions in the area of study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Biscayne Bay Benthic Sampling Program was divided into two phases. In Phase I, sixty sampling stations were established in Biscayne Bay (including Dumfoundling Bay and Card Sound) representing diverse habitats. The stations were visited in the wet season (late fall of 1981) and in the dry season (midwinter of 1982). At each station certain abiotic conditions were measured or estimated. These included depth, sources of freshwater inflow and pollution, bottom characteristics, current direction and speed, surface and bottom temperature, salinity and dissolved oxygen, and water clarity was estimated with a secchi disk. Seagrass blades and macroalgae were counted in a 0.1-m2 grid placed so as to best represent the bottom community within a 50-foot radius. Underwater 35-mm photographs were made of the bottom using flash apparatus. Benthic samples were collected using a petite Ponar dredge. These samples were washed through a 5-mm mesh screen, fixed in formalin in the field, and later sorted and identified by experts to a pre-agreed taxonomic level. During the wet season sampling period, a nonquantitative one-meter wide trawl was made of the epibenthic community. These samples were also washed, fixed, sorted and identified. During the dry season sampling period, sediment cores were collected at each station not located on bare rock. These cores were analyzed for sediment size and organic composition by personnel of the University of Miami. Data resulting from the sampling were entered into a computer. These data were subjected to cluster analyses, Shannon-Weaver diversity analysis, multiple regression analysis of variance and covariance, and factor analysis. In Phase II of the program, fifteen stations were selected from among the sixty of Phase I. These stations were sampled quarterly. At each quarter, five Petite Ponar dredge samples were collected from each station. As in Phase I, observations and measurements, including seagrass blade counts, were made at each station. In Phase II, polychaete specimens collected were given to a separate contractor for analysis to the species level. These analyses included mean, standard deviation, coefficient of dispersion, percent of total, and numeric rank for each organism in each station as well as number of species, Shannon-Weaver taxa diversity, and dominance (the compliment of Simpson's Index) for each station. Multiple regression analysis of variance and covariance, and factor analysis were applied to the data to determine effect of abiotic factors measured at each station. (PDF contains 96 pages)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ENGLISH: Samples of yellowfin tuna, Thunnus albacares, collected from five areas of the Pacific Ocean (Mexico, Ecuador, Australia, Japan, and Hawaii) between January and May of 1988 and 1990 were examined for spatiotemporal variation in morphometric characters and gill-raker counts. 'Iwo-factor analysis of variance, with area and year treated as grouping factors, indicated a significant difference in the means of the total gill-raker counts among fish from different areas, but no significant difference between fish caught in different years. The morphometric data were adjusted by allometric formulae to remove size effects. The correct classification rates for the five groups, using discriminant function analysis, based on adjusted morphometric characters, were 77.60/0 for the samples from 1988 and 74.40/0 for those from 1990. These are 72.00/0 and 68.00/0 (Cohen's kappa statistic) better than would have occurred chance. The pattern of geographic variability, however, is unstable for these two years, thus requiring separate discriminant functions for each year. Although there is annual variability in the morphometric characters, these results demonstrate that the stocks examined are morphometrically distinguishable and that their phenetic relationships reflect their geographic origin. SPANISH: Se examinaron muestras de atún aleta amarilla, Thunnus albacares, tomadas de cinco áreas del Océano Pacífico (México, Ecuador, Australia, Japón, y Hawaii) entre enero y mayo de 1988 y 1990, para descubrir variaciones espaciotemporales en las características morfométricas y los conteos de branquiespinas. Un análisis de varianza de dos factores, con área y año como factores de agrupación, indicó una diferencia significativa en los promedios de los conteos de branquiespinas totales entre peces de distintas áreas, pero ninguna entre peces capturados en distintos años. Se ajustaron los datos morfométricos con fórmulas alométricas para eliminar los efectos de la talla del pez. En un análisis de función discriminante, las tasas de clasificación correcta de los cinco grupos, basadas en características morfométricas ajustadas, fueron 77.60/0 para las muestras de 1988 y 74.40/0 para aquellas de 1990. Estas cifras son 72.00/0 y 68.00/0 (estadístico de kappa de Cohen) mejores de lo que se hubiera obtenido al azar. Sin embargo, la variabilidad geográfica es inestable en estos dos años, requiriendo por lo tanto funciones discriminantes separadas para cada año. Aunque existe variabilidad anual en las características morfométricas, estos resultados demuestran que los stocks examinados son morfamétricamente distinguibles, y que su relación fenética refleja su origen geográfico. (PDF contains 31 pages.)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies on genetic improvement of penaeid prawns for the character higher tail weight using methods of selective breeding were undertaken. Prior to the actual breeding experiments it was necessary to find out the quantum of available variability in the character tail weight amongst the natural populations of Penaeus merguiensis from the Indian waters. Thirteen morphometric variables were measured and various statistical analyses were carried out. The tail weight showed almost double values of coefficient of variation in the females than the males (C.V. 20.37 and 11.08 respectively). The combination of the characters viz. sixth segment length (SSL), sixth segment depth (SSD) and posterior abdominal circumference (PAC) gave the highest R super(2) values. These variables were easy to measure and gave maximum variation in the character tail weight without sacrificing the breeders in the brood stock. The quantitative character tail weight was influenced by both genetic and environmental factors was statistically ascertained by applying 2-Factor analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three spatial structure groups of radionuclides in U and Th series, 210Pb-excess and 137Cs, and 40K were found based on analyzing temporal and spatial datum of their content by factor analysis with oblique rotation in Nhatrang bay. U and Th spatial structure with their contours decreased toward the offshore, ran longshore and divided seawater of bay into two parts with strong gradient on both sides. Inside part located from center of Nhatrang bay toward the seashore with three main deposit centers of their contents higher than 23 Bq/kg.dry for 238U and 40 Bq/kg.dry for 232Th, indicated unstability of shoreline. Almost sediments coming from river extended toward the offshore, were stopped and transported toward southeastern. The outside part was less than above mentioned content. The boundary line between two parts superposed with the constantly limit line of turbid plume in the rainy season. Direct influence of the continental runoff was limited by the 9 Bq/kg.dry contour of 238U, 19 Bq/kg.dry contour of 232Th. Longshore current was a predominant process whereas lateral transport as sifting and winnowing process of finer grains in sediments of Nhatrang bay. Areas that had very low content of 137Cs and 210 Pb-excess adjoining shoreline showed areas being eroded. Accumulation of 137Cs and 210 Pbexcess nearby river mouth characterized for fine compositions of sediments controlled by seasonal plumes and sites further toward the south indicated finer materials transported from river and accumulated in lack of hydrodynamic process. Near shore accumulation of 40K revealed the sediments there originated from bed erosion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bream (Abramis brava orientalis) is one of Cyprindae the Caspian Sea and its basin which has a special ecological, biological and economical role. Stock of this fish in the Caspian Sea has reduced during several years for different reason the over fishing, different industrial, agriculture, urban pollution and destroy of the spawning habitat. So that fishery company decided to recover the stock of this fish by the way of artificial reproduction of a Bream couple hunted from south coast of the Caspian Sea (Iran) and setting the fingerling to the rivers and inflow wetlands of the Caspian Sea.This activity has due to 20 tons Bream annual fishing in the Iranian South coast of the Caspian Sea (Gilan province coast and Anzali wetland), The artificial reproduction has decreased Bream population diversity of Caspian sea and Anzali wetland.So it has been declined to improve Braem population diversity by the entrance of Azerbijan republic Bream and encounter to the Caspian sea Bream. Meanwhile there is Bream in the Aras Dam Lake which had been forgotten by the Fishery Company of Iran .For this reason specifications morphometric, meristic and inter species Molecular Genetic have been surveyed in Anzali wetland,Southern coast of Caspian Sea ,Aras Darn Lake and Azerbijan republic during 2003-2005. According to the research on specifications of Morphometric and Meristic of Anzali wetland(120 species),Southern coast of Caspian Sea(90 species), Aras Dam Lake(110 species) and Azerbijan Republic(125 species)has Morphometric and Meristic differences. So that average weight and total length of Anzali wetland Bream respectively was 167 g and 23/76 cm, 102 g and 27/62 cm in Caspian Sea , 461 g and 3 5/38 cm in Aras Darn Lake and 3 4189 g and 15/21 cm in Azerbijan republic (We forced to use 1 year Bream of artificial reproduction in Iran). Also variation coefficient average Morphometric, Morphometric specification Ration and meristic in Anzali wetland Bream was 17/45, 21/56 and 4/63, in Caspian Sea bream 22/58, 15/27 and 3124, in Aras Dam lake Lake 17145. 1.5/27 and 3/57 and Azerbaijan republic Bream 22/29, 19/66 and 4/22. Also Bream of these four regions in general status had Morphometric significant differences based on One Way ANOVA Analysis. Meanwhile Anzali wetland Bream with Caspian Sea Bream from 41 Morphometric surveyed factors in 33 factors, with Aras Darn Lake Bream in 41 factors, with Azerbkjan republic Bream in 41 factors,Caspian Sea Bream with Aras Darn Lake Bream in 36 factors,with Azerbijan republic B ream in 40 factors and A ras Dam L ake Bream with Azerbijan republic Bream in 38 factors had significant statistical differences. These four regions Bream had differences according to the Morphomertric specification ration based on One Way ANOVA Analysis. Also Anzali wetland Bream was surveyed with Caspian Sea Bream from 37 factors i n 27 factors, Anzali wetland Bream with Aras Dam 1ake in 37 factors Anzali wetland Bream with Azerbijan republic Bream in 32 factors,Caspian sea bream with Arsa Dam Lake Bream in 26 factors, Caspian Sea Bream with Azerbijan republic Bream in 29 factors and Aras Dam Lake Bream with Azerbijan republic Bream in 34 factor had significant statistical differences. Based on Meristic factor of four regions bream in 16 surveyed factors in 10 factors had meaningful differences according to the One Way ANOVA Analysis. While Anzali wetland Bream was surveyed with Caspian Sea Bream from in 3 factors,Anzali wetland Bream with Aras Dam lake in 8 factors,Anzali wetland Bream with Azerbijan republic B ream in 6 factors,Caspian Sea bream with Arsa Dam Lake Bream in 6 factors,Caspian sea Bream with Azerbijan republic Bream in 3 factors and Aras Dam Lake Bream with Azerijan republic Bream in 8 factor had significant statistical differences.Meanwihle based on Factor Analysis and Discriminant Breams had differences. Also according to the resrarchs Anzali wetland Bream in 0+ age group till 5+ (6 age groups),Caspian Sea bream in 1+ - 5+(5 age groups),Aras Darn Lake Bream in 1+ - 7+ (7 age groups) and Azerbijan republic Bream for Morphometric and Meristic studies in 1+age group and for molecular Genetic reaserch were in 8+and 9+ age groups. According to the research 4 ecosystems Bream in status of same age, Aras lake Bream were bigger according to weight and length.Also in this research genetic diversity between four population was researched by PCR-RFLP technic on a piece of mitochondrion genome with the length of 3500bp contain of tRNA-leu,tRNA-glu,ND5/6,Cytb. Between 17 used enzyme. 4 enzyme, Dral, Bc11, Haefll and Banff showed diversity in totally 6 composite haplotype was detected. Maximum nucleotide diversity by the value% 0/58 in Azerbijan republic Bream by all haplotype. Aras darn Lake Bream had 2 haplotype and nucleotide diversity of %0/35.Anzali wetland and Caspian Sea Bream had no diversity. Statistical analysis by the usage of Monte Carlo with 1000 repeat showed significant differences between Azerbaijan Bream and other Bream(P<0/0001) but there was no significant difference between 3 regions Bream(P>0/5).