40 resultados para Experts
em Aquatic Commons
Resumo:
On 17-20 July 2007, 45 experts on sea turtles, fisheries, conservation and finance from 10 countries convened at the Bellagio Sea Turtle Conservation Initiative workshop in Terengganu to focus on methods to save the imperiled Pacific leatherback from extinction. The group developed a strategic plan to guide the prioritization and long term financing of Pacific leatherback turtle conservation and recovery objectives. Participants identified critical conservation actions and agreed that a business plan is urgently needed to reverse the trajectory towards extinction of the Pacific leatherback. The conservation actions prioritized by the participants encompassed protecting nesting beaches including eggs and nesting females; reducing direct and indirect turtle take in coastal fisheries; and strengthening regional and sub-regional cooperation. The group committed to work together on fundraising and implementation of these urgent conservation actions. This report presents outputs and the plan that was produced from the workshop.
Resumo:
This study on marine protected areas (MPAs) in Mexico relies on a variety of data sources as well as the authors’ longstanding field experience, particularly in the Yucatan Peninsula, to analyze the design, establishment and operation of protected areas. It discusses two case studies of MPAs in detail and summarizes the findings from four others, focusing primarily on the role played by local communities in managing coastal and marine resources. The study also draws on the perspective of key informants, namely, Mexican experts on coastal and ocean management issues, including government officials, decisionmakers, researchers, members of non governmental organizations (NGOs), and consultants. (97 pp.)
Resumo:
On September 7, 2000 the National Marine Fisheries Service announced that it was reinitiating consultation under Section 7 of the Endangered Species Act on pelagic fisheries for swordfish, sharks, tunas, and billfish. 1 Bycatch of a protected sea turtle species is considered a take under the Endangered Species Act (PL93-205). On June 30, 2000 NMFS completed a Biological Opinion on an amendment to the Highly Migratory Pelagic Fisheries Management Plan that concluded that the continued operation of the pelagic longline fishery was likely to jeopardize the continued existence of loggerhead and leatherback sea turtles.2 Since that Biological Opinion was issued NMFS concluded that further analyses of observer data and additional population modeling of loggerhead sea turtles was needed to determine more precisely the impact of the pelagic longline fishery on turtles. 3,4 Hence, the reinitiation of consultation. The documents that follow constitute the scientific review and synthesis of information pertaining to the narrowly defined reinitiation of consultation: the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles The document is in 3 parts, plus 5 appendices. Part I is a stock assessment of loggerhead sea turtles of the Western North Atlantic. Part II is a stock assessment of leatherback sea turtles of the Western North Atlantic. Part III is an assessment of the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles of the Western North Atlantic. These documents were prepared by the NMFS Southeast Fisheries Science Center staff and academic colleagues at Duke University and Dalhousie University. Personnel involved from the SEFSC include Joanne Braun-McNeill, Lisa Csuzdi, Craig Brown, Jean Cramer, Sheryan Epperly, Steve Turner, Wendy Teas, Nancy Thompson, Wayne Witzell, Cynthia Yeung, and also Jeff Schmid under contract from the University or Miami. Our academic colleagues, Ransom Myers, Keith Bowen, and Leah Gerber from Dalhousie University and Larry Crowder and Melissa Snover from Duke University, also recipients of a Pew Charitable Trust Grant for a Comprehensive Study of the Ecological Impacts of the Worldwide Pelagic Longline Industry, made significant contributions to the quantitative analyses and we are very grateful for their collaboration. We appreciate the reviews of the stock definition sections on loggerheads and leatherbacks by Brian Bowen, University of Florida, and Peter Dutton, National Marine Fisheries Service Southwest Fisheries Science Center, respectively, and the comments of the NMFS Center of Independent Experts reviewers Robert Mohn, Ian Poiner, and YouGan Wang on the entire document. We also wish to acknowledge all the unpublished data used herein which were contributed by many researchers, especially the coordinators and volunteers of the nesting beach surveys and the sea turtle stranding and salvage network and the contributors to the Cooperative Marine Turtle Tagging Program. (PDF contains 349 pages)
Resumo:
The Biscayne Bay Benthic Sampling Program was divided into two phases. In Phase I, sixty sampling stations were established in Biscayne Bay (including Dumfoundling Bay and Card Sound) representing diverse habitats. The stations were visited in the wet season (late fall of 1981) and in the dry season (midwinter of 1982). At each station certain abiotic conditions were measured or estimated. These included depth, sources of freshwater inflow and pollution, bottom characteristics, current direction and speed, surface and bottom temperature, salinity and dissolved oxygen, and water clarity was estimated with a secchi disk. Seagrass blades and macroalgae were counted in a 0.1-m2 grid placed so as to best represent the bottom community within a 50-foot radius. Underwater 35-mm photographs were made of the bottom using flash apparatus. Benthic samples were collected using a petite Ponar dredge. These samples were washed through a 5-mm mesh screen, fixed in formalin in the field, and later sorted and identified by experts to a pre-agreed taxonomic level. During the wet season sampling period, a nonquantitative one-meter wide trawl was made of the epibenthic community. These samples were also washed, fixed, sorted and identified. During the dry season sampling period, sediment cores were collected at each station not located on bare rock. These cores were analyzed for sediment size and organic composition by personnel of the University of Miami. Data resulting from the sampling were entered into a computer. These data were subjected to cluster analyses, Shannon-Weaver diversity analysis, multiple regression analysis of variance and covariance, and factor analysis. In Phase II of the program, fifteen stations were selected from among the sixty of Phase I. These stations were sampled quarterly. At each quarter, five Petite Ponar dredge samples were collected from each station. As in Phase I, observations and measurements, including seagrass blade counts, were made at each station. In Phase II, polychaete specimens collected were given to a separate contractor for analysis to the species level. These analyses included mean, standard deviation, coefficient of dispersion, percent of total, and numeric rank for each organism in each station as well as number of species, Shannon-Weaver taxa diversity, and dominance (the compliment of Simpson's Index) for each station. Multiple regression analysis of variance and covariance, and factor analysis were applied to the data to determine effect of abiotic factors measured at each station. (PDF contains 96 pages)
Resumo:
Executive Summary: For over three decades, scientists have been documenting the decline of coral reef ecosystems, amid increasing recognition of their value in supporting high biological diversity and their many benefits to human society. Coral reef ecosystems are recognized for their benefits on many levels, such as supporting economies by nurturing fisheries and providing for recreational and tourism opportunities, providing substances useful for medical purposes, performing essential ecosystem services that protect against coastal erosion, and provid-ing a diversity of other, more intangible contributions to many cultures. In the past decade, the increased awareness regarding coral reefs has prompted action by governmental and non-governmental organizations, including increased funding from the U.S. Congress for conservation of these important ecosystems and creation of the U.S. Coral Reef Task Force (USCRTF) to coordinate activities and implement conservation measures [Presidential Executive Order 13089]. Numerous partnerships forged among Federal agencies and state, local, non-governmental, academic and private partners support activities that range from basic science to systematic monitoring of ecosystem com-ponents and are conducted by government agencies, non-governmental organizations, universities, and the private sector. This report shares the results of many of these efforts in the framework of a broad assessment of the condition of coral reef ecosystems across 14 U.S. jurisdictions and Pacific Freely Associated States. This report relies heavily on quantitative, spatially-explicit data that has been collected in the recent past and comparisons with historical data, where possible. The success of this effort can be attributed to the dedication of over 160 report contributors who comprised the expert writing teams for each jurisdiction. The content of the report chapters are the result of their considerable collaborative efforts. The writing teams, which were organized by jurisdiction and comprised of experts from numerous research and management institutions, were provided a basic chapter outline and a length limit, but the content of each chapter was left entirely to their discretion. Each jurisdictional chapter in the report is structured to: 1) describe how each of the primary threats identified in the National Coral Reef Action Strategy (NCRAS) has manifested in the jurisdiction; 2) introduce ongoing monitoring and assessment activities relative to three major categories of inquiry – water quality, benthic habitats, and associated biological communities – and provide summary results in a data-rich format; and 3) highlight recent management activities that promote conservation of coral reef ecosystems.
Resumo:
Davidson Seamount is one of the largest seamounts in U.S. waters and the first to be characterized as a “seamount.” In 2002 and 2006, the Monterey Bay National Marine Sanctuary (MBNMS) led two multi-institutional expeditions to characterize the geology and natural history of Davidson Seamount. Results from these expeditions to Davidson Seamount are adding to the scientific knowledge of seamounts, including the discovery of new species. In November 2008, the MBNMS boundary was expanded to include the Davidson Seamount. In addition, a management plan for Davidson Seamount was created to develop resource protection, education, and research strategies for the area. The purpose of this taxonomic guide is to create an inventory of benthic and mid-water organisms observed at the Davidson Seamount to provide a baseline taxonomic characterization. At least 237 taxa were observed and are presented in this guide; including 15 new or undescribed species (8 sponges, 3 corals, 1 ctenophore, 1 nudibranch, 1 polychaete, 1 tunicate) recently or currently being described by taxonomic experts. This is the first taxonomic guide to Davidson Seamount, and is intended to be revised in the future as we learn more about the seamount and the organisms that live there. (PDF has 145 pages.)
Resumo:
The Scientific Forum on the Gulf of Mexico: The Islands in the Stream Concept took place in January 2008 in Sarasota, Florida. The purpose of the meeting was to bring together scientists and managers from around the Gulf of Mexico to discuss a range of topics on our knowledge of the Gulf of Mexico, from its geology to larger-scale connectivity to the Caribbean region, and their applications to the concept of a more integrated approach to area-based management. The forum included six panels of invited experts who spoke on the oceanographic and biological features in the Gulf of Mexico, including connections with Mexico and the Mesoamerican barrier reef system, and the legal and regulatory structure currently in place. The charge to the group was to share information, identify gaps in our knowledge, identify additional potential areas for protection, and discuss available science about connectivity and the potential value of establishing a marine protected area network in the Gulf of Mexico. (PDF has 108 pages.)
Resumo:
With elevating interest to establish conservation efforts for groundfish stocks and continued scrutiny over the value of marine protected areas along the west coast, the importance of enhancing our knowledge of seabed characteristics through mapping activities is becoming increasingly more important, especially in a timely manner. Shortly after the inception of the Seabed Mapping Initiative instituted with the US Geological Survey (USGS), the National Marine Sanctuary Program (NMSP) assembled a panel of habitat mapping experts. They determined that the status of existing data sets and future data acquisition needs varied widely among the individual sanctuaries and that more detailed site assessments were needed to better prioritize mapping efforts and outline an overall joint strategy. To assist with that specific effort and provide pertinent information for the Olympic Coast National Marine Sanctuary’s (OCNMS) Management Plan Review, this report summarizes the mapping efforts that have taken place at the site to date; calculates a timeframe for completion of baseline mapping efforts when operating under current data acquisition limitations; describes an optimized survey strategy to dramatically reduce the required time to complete baseline surveying; and provides estimates for the needed vessel sea-days (DAS) to accomplish baseline survey completion within a 2, 5 and 10 year timeframe. (PDF contains 38 pages.)
Resumo:
EXECUTIVE SUMMARY: The Coastal Change Analysis Programl (C-CAP) is developing a nationally standardized database on landcover and habitat change in the coastal regions of the United States. C-CAP is part of the Estuarine Habitat Program (EHP) of NOAA's Coastal Ocean Program (COP). C-CAP inventories coastal submersed habitats, wetland habitats, and adjacent uplands and monitors changes in these habitats on a one- to five-year cycle. This type of information and frequency of detection are required to improve scientific understanding of the linkages of coastal and submersed wetland habitats with adjacent uplands and with the distribution, abundance, and health of living marine resources. The monitoring cycle will vary according to the rate and magnitude of change in each geographic region. Satellite imagery (primarily Landsat Thematic Mapper), aerial photography, and field data are interpreted, classified, analyzed, and integrated with other digital data in a geographic information system (GIS). The resulting landcover change databases are disseminated in digital form for use by anyone wishing to conduct geographic analysis in the completed regions. C-CAP spatial information on coastal change will be input to EHP conceptual and predictive models to support coastal resource policy planning and analysis. CCAP products will include 1) spatially registered digital databases and images, 2) tabular summaries by state, county, and hydrologic unit, and 3) documentation. Aggregations to larger areas (representing habitats, wildlife refuges, or management districts) will be provided on a case-by-case basis. Ongoing C-CAP research will continue to explore techniques for remote determination of biomass, productivity, and functional status of wetlands and will evaluate new technologies (e.g. remote sensor systems, global positioning systems, image processing algorithms) as they become available. Selected hardcopy land-cover change maps will be produced at local (1:24,000) to regional scales (1:500,000) for distribution. Digital land-cover change data will be provided to users for the cost of reproduction. Much of the guidance contained in this document was developed through a series of professional workshops and interagency meetings that focused on a) coastal wetlands and uplands; b) coastal submersed habitat including aquatic beds; c) user needs; d) regional issues; e) classification schemes; f) change detection techniques; and g) data quality. Invited participants included technical and regional experts and representatives of key State and Federal organizations. Coastal habitat managers and researchers were given an opportunity for review and comment. This document summarizes C-CAP protocols and procedures that are to be used by scientists throughout the United States to develop consistent and reliable coastal change information for input to the C-CAP nationwide database. It also provides useful guidelines for contributors working on related projects. It is considered a working document subject to periodic review and revision.(PDF file contains 104 pages.)
Resumo:
A two day workshop was convened on February 2-3, 1998 in Charleston, SC with 20 invited experts in various areas of sea turtle research. The goal of this workshop was to review current information on sea turtles with repect to health and identify data gaps. The use of a suite of health assessment indicators will provide insight on the health status of sea turtle populations. Since the relationship of health factors of sea turtles is limited, a seconde workshop was planned. Using a tiered approach, the first workshop we identified and reviewed the available, pertinent baseline information and data gaps. The second workshop will focus on developing the framework for the research plan. The workshops will address the use of integrated set of health parameters; specific objectives are: 1) Identify reliable indicators of health in sea turtles: assess advantages and disadvantages; determine new indicators/biomarkers which may be useful; 2) Review existing sea turtle field sampling projects; 3) Identify field projects suitable for inclusion for health assessment sampling; 4) Identify data gaps, particularly environmental characterization; 5) Identify new health assessment sampling sites, including reference site(s); and 6) Develop integrated five-year research plan, with focus on health assessment of environmental characterization. (PDF contains 174 pages)
Resumo:
ENGLISH: The skipjack tuna, Katsuwonus pelamis is an important resource of the tropical and subtropical waters of the world ocean. Fishermen of many countries exploit this resource; at the present time, the annual world catch is approximately 200 thousand metric tons. Many fishery experts believe that the skipjack is not being fully utilized while stocks of other tunas are being fished, in some areas, at levels exceeding their maximum sustainable yields. In addition to the importance of skipjack as a commercial fish and as a source of food, there is a small but expanding recreational fishery in some countries bordering the Pacific. This bibliography provides a list of publications pertaining to the biology and fishery of the Pacific skipjack tuna. Papers concerned with food technology, food chemistry, radio-chemistry, and certain other subjects are excluded. The main sources for our publication have been the existing bibliographies of tunas, which are listed and indexed accordingly. In addition, reports of various marine laboratories and other scientific organizations have been checked; these are too numerous to list. We are fairly confident that all major works pertaining to skipjack tuna in the Pacific, printed prior to the end of 1966, appear in this bibliography. Only reports considered to be in permanent form are included. Annotations are based on actual examination of each of the entries listed here. The annotations do not evaluate a paper but serve rather to give a more precise idea of its contents if not revealed by the title alone. If the title sufficed in this respect, no annotation was prepared. A relatively small number of works believed to contain information pertinent to our bibliography could not be examined, but a list of such papers is provided. SPANISH: El atún barrilete, Katsuwonus pelamis, es un recurso importante de las aguas tropicales y subtropicales del océano mundial. Los pescadores de varios países explotan este recurso; actualmente, la captura mundial anual es aproximadamente de 200,000 toneladas métricas. Muchos expertos en la pesquería creen que el barrilete no es utilizado completamente, mientras los stocks de otros atunes son pescados en algunas áreas a niveles que exceden su rendimiento máximo sostenible. Además de la importancia del barrilete como pez comercial y como fuente de alimento, existe una pesquería pequeña recreativa que se está desarrollando en algunos países colindantes con el Pacífico. Esta bibliografía suministra una lista de publicaciones correspondientes a la biología y pesquería del atún barrilete en el Pacífico. Estudios referentes a la tecnología alimenticia, química alimenticia, radioquímica y ciertos otros sujetos son excluídos. Las fuentes principales correspondientes a nuestra publicación han sido las bibliografías existentes sobre atunes, las cuales están enumeradas y catalogadas de acuerdo. Además, se han examinado los informes de varios laboratorios marítimos y los de otras organizaciones científicas; éstos son demasiado numerosos para enumerar. Estamos bastante seguros de que todos los trabajos principales correspondientes al atún barrilete del Pacífico, editados antes de terminar el año de 1966, aparecen en esta bibliografía. Se incluyen únicamente los informes que se consideran permanentes. Las anotaciones se basan en el examen actual de cada una de las entradas aquí referidas. Las anotaciones no evaluan un estudio, pero sirven más bien para dar una idea más precisa de su contenido si el título por sí mismo no lo explica. No se preparó ninguna anotación si el título a este respecto era suficiente. Un número relativamente pequeño de trabajos que se cree tengan información pertinente a nuestra bibliografía no pudo ser examinado, pero se suministra una lista de tales estudios. (PDF contains 227 pages.)
Resumo:
A mathematical model to optimize the German fishing fleet is draftet and it’s data basis is described. The model has been developed by Brodersen, Campbell and Hanf in 1994 to 1998. It could be shown, that this model is flexible enough to be applied successfully to a lot of very different political questions, if adapted accordingly. The economic consequences of measures of fishery politics, the effects of technical advances, but also increasing incertainties can, to some degree, appropriately be assessed quantitatively. Finally it could be shown that, principally, the available account of data is a good basis for investigations into fishery economics and fishery politics. However there is a need to treat the source of data continuously and competently in order to make these informations available quickly. Statistical data to reflect the fishery sector are valuable. However, they obtain their full value only when judged by experts from the fishing industry, biology and technical fishery research.
Resumo:
For monitoring of the engine power of fishing vessels permitted for fishery in the plaice box with engine power of 300 HP or less at sea three different portable power measurement systems are developed and tested. A system measuring the twist of the propeller shaft by two divisible gearwheels mounted on the shaft worked well at shafts with roller bearing at both sides of the measured interval of 100–300 mm length. Only at a very few fishing vessels this system is applicable and therefore for monitoring purposes not suitable. The application of a commercial available system measuring the stress at the surface of the shaft was simplified for application by non experts. The torque is measured by strain gauges. The calibration of the system, measuring and recording of the power is done by a PC automatically. A small polished facet on the shaft protected against oxidation is needed for easy and quick application. In this case the system can be used by technical personnel of supervision boats for monitoring of the engine power at sea in a short time. A third power measurement system determinates the torque by measuring the displacement of two supports clamped on the shaft at a distance of 100 mm. The displacement is measured by a micrometer gauge mounted on one of the supports. Readout of the rotating gauge display is possible taking advantage of stroboscopic effect. The system needs no conditioning of the shaft and can be used by non technicians. The development is not finished until now and some additional investigations and tests are required. Additional measures for monitoring of the power on fishing vessels by self recording power measurement systems and sealed fuel racks with limited injection are reported and discussed.
Resumo:
It is generally recognized from the food balance sheet prepared by experts that Nigeria is a protein deficient country. Not only is the daily intake of protein low but the contribution from animal sources is extremely low. Fish has been found to be the cheapest source of protein in Nigeria hence the consumption of fish will supply the needed protein at a relatively low cost. The study, conducted in Calabar in 1981, was analysed using stepwise ordinary least square multiple regression technique as well as Pearson correlation analysis. The regression result was used to generate some demand curves for different levels of per capital income, as well as own price elasticity of demand. The results show that both own price elasticity of demand for fresh and frozen fish decreased as the level of per capital income increased while income elasticity of demand increased as per capital income increased. The calculated per capital consumption was found to be 5.18 kilograms and 4.31 kg per annum for fresh fish and frozen fish respectively. This is considered rather small since Calabar is a sea port where fish should be more readily available. The values of own price and income elasticities indicate that more fish will be consumed at every increase in income if both production and marketing are improved
Resumo:
Cost projections for the establishment of a fish farm in Nigeria was conducted. It is shown that fish farming should be a lucrative venture. However, many private fish farms are not making the desired profits because of a variety of problems. Besides managerial incompetence, availability of fingerlings for stocking in the ponds is shown to be a serious handicap to the success of investments in a fish farm. It is suggested that where the funds are available, each farm should be equipped with facilities for raising its needs of fingerlings. Since useful capital would be involved and knowledgeable experts to run the hatcheries are few, it is recommended that fish farms within a state or adjacent states should combine to establish viable cooperative hatcheries