2 resultados para Execute
em Aquatic Commons
Resumo:
(Document pdf contains 193 pages) Executive Summary (pdf, < 0.1 Mb) 1. Introduction (pdf, 0.2 Mb) 1.1 Data sharing, international boundaries and large marine ecosystems 2. Objectives (pdf, 0.3 Mb) 3. Background (pdf, < 0.1 Mb) 3.1 North Pacific Ecosystem Metadatabase 3.2 First federation effort: NPEM and the Korea Oceanographic Data Center 3.2 Continuing effort: Adding Japan’s Marine Information Research Center 4. Metadata Standards (pdf, < 0.1 Mb) 4.1 Directory Interchange Format 4.2 Ecological Metadata Language 4.3 Dublin Core 4.3.1. Elements of DC 4.4 Federal Geographic Data Committee 4.5 The ISO 19115 Metadata Standard 4.6 Metadata stylesheets 4.7 Crosswalks 4.8 Tools for creating metadata 5. Communication Protocols (pdf, < 0.1 Mb) 5.1 Z39.50 5.1.1. What does Z39.50 do? 5.1.2. Isite 6. Clearinghouses (pdf, < 0.1 Mb) 7. Methodology (pdf, 0.2 Mb) 7.1 FGDC metadata 7.1.1. Main sections 7.1.2. Supporting sections 7.1.3. Metadata validation 7.2 Getting a copy of Isite 7.3 NSDI Clearinghouse 8. Server Configuration and Technical Issues (pdf, 0.4 Mb) 8.1 Hardware recommendations 8.2 Operating system – Red Hat Linux Fedora 8.3 Web services – Apache HTTP Server version 2.2.3 8.4 Create and validate FGDC-compliant Metadata in XML format 8.5 Obtaining, installing and configuring Isite for UNIX/Linux 8.5.1. Download the appropriate Isite software 8.5.2. Untar the file 8.5.3. Name your database 8.5.4. The zserver.ini file 8.5.5. The sapi.ini file 8.5.6. Indexing metadata 8.5.7. Start the Clearinghouse Server process 8.5.8. Testing the zserver installation 8.6 Registering with NSDI Clearinghouse 8.7 Security issues 9. Search Tutorial and Examples (pdf, 1 Mb) 9.1 Legacy NSDI Clearinghouse search interface 9.2 New GeoNetwork search interface 10. Challenges (pdf, < 0.1 Mb) 11. Emerging Standards (pdf, < 0.1 Mb) 12. Future Activity (pdf, < 0.1 Mb) 13. Acknowledgments (pdf, < 0.1 Mb) 14. References (pdf, < 0.1 Mb) 15. Acronyms (pdf, < 0.1 Mb) 16. Appendices 16.1. KODC-NPEM meeting agendas and minutes (pdf, < 0.1 Mb) 16.1.1. Seattle meeting agenda, August 22–23, 2005 16.1.2. Seattle meeting minutes, August 22–23, 2005 16.1.3. Busan meeting agenda, October 10–11, 2005 16.1.4. Busan meeting minutes, October 10–11, 2005 16.2. MIRC-NPEM meeting agendas and minutes (pdf, < 0.1 Mb) 16.2.1. Seattle Meeting agenda, August 14-15, 2006 16.2.2. Seattle meeting minutes, August 14–15, 2006 16.2.3. Tokyo meeting agenda, October 19–20, 2006 16.2.4. Tokyo, meeting minutes, October 19–20, 2006 16.3. XML stylesheet conversion crosswalks (pdf, < 0.1 Mb) 16.3.1. FGDCI to DIF stylesheet converter 16.3.2. DIF to FGDCI stylesheet converter 16.3.3. String-modified stylesheet 16.4. FGDC Metadata Standard (pdf, 0.1 Mb) 16.4.1. Overall structure 16.4.2. Section 1: Identification information 16.4.3. Section 2: Data quality information 16.4.4. Section 3: Spatial data organization information 16.4.5. Section 4: Spatial reference information 16.4.6. Section 5: Entity and attribute information 16.4.7. Section 6: Distribution information 16.4.8. Section 7: Metadata reference information 16.4.9. Sections 8, 9 and 10: Citation information, time period information, and contact information 16.5. Images of the Isite server directory structure and the files contained in each subdirectory after Isite installation (pdf, 0.2 Mb) 16.6 Listing of NPEM’s Isite configuration files (pdf, < 0.1 Mb) 16.6.1. zserver.ini 16.6.2. sapi.ini 16.7 Java program to extract records from the NPEM metadatabase and write one XML file for each record (pdf, < 0.1 Mb) 16.8 Java program to execute the metadata extraction program (pdf, < 0.1 Mb) A1 Addendum 1: Instructions for Isite for Windows (pdf, 0.6 Mb) A2 Addendum 2: Instructions for Isite for Windows ADHOST (pdf, 0.3 Mb)
Resumo:
Cold smoking method is one of the commonest ways for fish smoking. It is done by the smoke that is the result of burning hard and soft woods is smoking rooms. Smoke includes a number of chemical constructs and its main part is poly aromatic hydrocarbons. More than one hundred kinds of these constructs are recognized in smoke that is produced from saturated hydrocarbons resulted from the solution of the woods Ligno cellulose in high temperature and lack of oxygen conditions. The high poisoning potentials and carcinogenic features sixteen constructs among them are proved and observed on humans. In this research, the PAH compounds were identified and observed in a three month period after smoking and during storing among three types of smoked fishes Silver carp and Caspian sea Sefid and herring. They are the most produced and consumed smoked fish in Iran. To find the relationship between the concentrations of PAH constructs and the amount of lipid in fish, first, the amount of lipid were determined separately in the skin and flesh of 30 samples of each type. The method used was Bligh and Dyer (1959). PAH compounds derivation were made for all skin and flesh samples smoked fish using organic solvents with Soxeleh and the derived samples were injected to gas chromatography (GC) by Hamilton injectors for determining their components quality and their quantity. The height of the used column was 25 meters and its diameter was 0.32 mm with the silica filler, nitrogen gas as carrier and flame ionization detector (FID) that are special for these constructs. For data analysis, Statistical tests were used by computer soft ware identified that the difference in the amount of lipid within the flesh and skin of each species and also among each other is significant. The largest amount was in Herrings flesh and skin, 18.74% in skin and 14.47% in flesh. The least amount in the skin 4.19% and the flesh 3.10% of Sefid. The amount in Silver carp was 13.28%in skin and 8.16% in flesh. The examination of the PAH compounds in smoked fish showed that is carcinogenic compounds; exist in these in these fish with different quantities in each. It seems that its amount is directly related to the amount of their lipid. The amount is different in flesh and skin. One of the most important reasons is the direct content of smoke and the concentration of lipid in tissues of all three types. The maintenance of the smoked fish for three months showed that most of PAH compounds were solved and their density decreased. The changes in density within time in different in each type and in flesh and skin. The amount of their receiving in human through the consumption of the smoked fish depends on the resulted density, the way and the amount of consumption and now we can determine and execute standards for the maximum dosage per day and per month regarding effective factors.