15 resultados para Evaporation

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The principal sources of surface-water supplies inBaker County are the St. Marys River and its tributaries. However, the flow of many of the small tributaries is intermittent, and without storage they are not dependable sources of supply during sustained periods of deficient rainfall. Of the six stream-gaging stations in Baker County for which complete records are available, one has been in operation for 31 years and provides a long-term record upon which to base correlative estimates for extending the short-term records at the other stations. All available streamflow data to 1957 have been summarized in graphic or tabular form. The hydrologic balance between minimum streamflows and increased evaporation losses afforded by potential shallow reservoirs provides design criteria for determining the maximum surface area of effective reservoir that can be created at a selected site within Baker County. This information has been presented in graphic and tabular form in the report. (PDF has 37 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Executive Summary: Circulation and Exchange of Florida Bay and South Florida Coastal Waters The coastal ecosystem of South Florida is comprised of distinct marine environments. Circulation of surface waters and exchange processes, which respond to both local and regional forcings, interconnect different coastal environments. In addition, re-circulating current systems within the South Florida coastal ecosystem such as the Tortugas Gyre contribute to retention of locally spawned larvae. Variability in salinity, chlorophyll, and light transmittance occurs on a wide range of temporal and spatial scales, in response to both natural forcing, such as seasonal precipitation and evaporation and interannual “El Niño” climate signals, and anthropogenic forcing, such as water management practices in south Florida. The full time series of surface property maps are posted at www.aoml.noaa.gov/sfp. Regional surface circulation patterns, shown by satellite-tracked surface drifters, respond to large-scale forcing such as wind variability and sea level slopes. Recent patterns include slow flow from near the mouth of the Shark River to the Lower Keys, rapid flow from the Tortugas to the shelf of the Carolinas, and flow from the Tortugas around the Tortugas Gyre and out of the Florida Straits. The Southwest Florida Shelf and the Atlantic side of the Florida Keys coastal zone are directly connected by passages between the islands of the Middle and Lower Keys. Movement of water between these regions depends on a combination of local wind-forced currents and gravitydriven transports through the passages, produced by cross-Key sea level differences on time scales of several days to weeks, which arise because of differences in physical characteristics (shape, orientation, and depth) of the shelf on either side of the Keys. A southeastward mean flow transports water from western Florida Bay, which undergoes large variations in water quality, to the reef tract. Adequate sampling of oceanographic events requires both the capability of near real-time recognition of these events, and the flexibility to rapidly stage targeted field sampling. Capacity to respond to events is increasing, as demonstrated by investigations of the 2002 “blackwater” event and a 2003 entrainment of Mississippi River water to the Tortugas. (PDF contains 364 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elkhorn Slough was first exposed to direct tidal forcing from the waters of Monterey Bay with the construction of Moss Landing Harbor in 1946. Elkhorn Slough is located mid-way between Santa Cruz and Monterey close to the head of Monterey Submarine Canyon. It follows a 10 km circuitous path inland from its entrance at Moss Landing Harbor. Today, Elkhorn Slough is a habitat and sanctuary for a wide variety of marine mammals, fish, and seabirds. The Slough also serves as a sink and pathway for various nutrients and pollutants. These attributes are directly or indirectly affected by its circulation and physical properties. Currents, tides and physical properties of Elkhorn Slough have been observed on an irregular basis since 1970. Based on these observations, the physical characteristics of Elkhorn Slough are examined and summarized. Elkhorn Slough is an ebb-dominated estuary and, as a result, the rise and fall of the tides is asymmetric. The fact that lower low water always follows higher high water and the tidal asymmetry produces ebb currents that are stronger than flooding currents. The presence of extensive mud flats and Salicornia marsh contribute to tidal distortion. Tidal distortion also produces several shallow water constituents including the M3, M4, and M6 overtides and the 2MK3 and MK3 compound tides. Tidal elevations and currents are approximately in quadrature; thus, the tides in Elkhorn Slough have some of the characters of a standing wave system. The temperature and salinity of lower Elkhorn Slough waters reflect, to a large extent, the influence of Monterey Bay waters, whereas the temperature and salinity of the waters of the upper Slough (>5 km from the mouth) are more sensitive to local processes. During the summer, temperature and salinity are higher in the upper slough due to local heating and evaporation. Maximum tidal currents in Elkhorn Slough have increased from approximately 75 to 120 cm/s over the past 30 years. This increase in current speed is primarily due to the change in tidal prism which has increased from approximately 2.5 to 6.2 x 106 m3 between 1956 and 1993. The increase in tidal prism is the result of both 3 rapid man-made changes to the Slough, and the continuing process of tidal erosion. Because of the increase in the tidal prism, the currents in Elkhorn Slough exhibit positive feedback, a process with uncertain consequences. [PDF contains 55 pages]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ENGLISH: Seasonal changes in the climatology, oceanography and fisheries of the Panama Bight are determined mainly by the latitudinal movements of the ITCZ over the region. Evaporation is about 980 mm annually. Rainfall is probably much less than previous estimates because of a discontinuity in the ITCZ. Freshwater runoff from the northern watershed varies from 22 X 109 m3/mo in October-November to 11 X 109 m3/mo in February-March; from the southeastern watershed it varies from 16 X 109 m3/mo in April-June to 9 X 109 m3/mo in October-December. Total annual runoff is about 350 X 109m3. A marked salinity front is found at all seasons off the eastern shore. In the northern part of the Bight temperatures in the upper layers remained fairly constant from May to November; by February the mean temperature had decreased by 4°C and sharp gradients existed in the geographic distributions. Salinities in the upper layers decreased steadily from May to November; by February the mean salinity had increased by 2.5‰. The mean depth of the mixed layer increased from 27 m in May to 40 m in November; by February upwelling decreased it to 18 m. Between November and February upwelling had doubled the amount of P04-P and tripled that of NO3-N in the euphotic zone; surface phytoplankton production and standing crop, and zooplankton concentrations also doubled during this period. Upwelling was about 1.5 m/mo during May-November and about 9.0 m/mo during November-February, the annual total is about 48 m, Mean primary production is about 0.3 gC/m2day during May-December and about 0.6 gC/m2day during January-April; annual production is about 140 gC/m2. A thermal ridge occurred in February running from the northern to the southwestern part of the Bight. Within this ridge was a marked thermal dome coinciding with the center of the cyclonic circulation cell. Upwelling in the dome averaged 16 m/mo in November-February. The fisheries of the Panama Bight annually produce about 30,000 metric tons of food species and about 68,000 m.t. of species used for reduction. Most attempts to further the understanding of tuna ecology were unsuccessful. The apparent abundances of yellowfin and skipjack in the northern part of the Bight appear to be related to the seasonal cycle of upwelling and enrichment, as abundances are greatest in April and May when food appears to be plentiful. The life-cycle of the anchoveta in the Gulf of Panama also appears to be related to upwelling; the species mass varies from about 39,000 m.t. in December to about 169,000 m.t, in April. About 19.1 X 1012 anchoveta eggs are spawned annually. The life-cycles of shrimp in the Panama Bight appear to be related to upwelling as catches are greatest in May-July, about 3-5 months after peak upwelling, and annual catches are inversely correlated with sea level. SPANISH: Los cambios estacionales en la climatología, oceanografía y pesquerías del Panamá Bight están determinados principalmente por el movimiento latitudinal sobre la región de la Zona de Convergencia Intertropical (ZCIT). La evaporación es de unos 980 mm al año. La pluviosidad es probablemente muy inferior a las estimaciones previas a causa de la descontinuidad en la ZCIT. El drenaje de agua dulce, de la vertiente septentrional, varía de 22 x 109m3/mes en octubre-noviembre hasta 11 x 109m3/mes en febreromarzo; el de la vertiente sudeste varía de 16 x 109m3/mes en abril-junio a 9 x 109m3/mes en octubre-diciembre. El drenaje total, anual, es alrededor de 350 x 109m3. En todas las estaciones frente al litoral oriental se encuentra un frente de salinidad marcada. En la parte septentrional del Bight las temperaturas en las capas superiores permanecieron más bien constantes de mayo a noviembre; en febrero la temperatura media había disminuido en unos 4°C y existieron gradientes agudos en las distribuciones geográficas. Las salinidades en las capas superiores disminuyeron constantemente de mayo a noviembre; en febrero la salinidad media había aumentado en 2.5‰. La profundidad media de la capa mixta aumentó de 27 m en mayo a 40 m en noviembre; en febrero el afloramiento disminuyó el espesor de la capa mixta hasta 18 m. Entre noviembre y febrero el afloramiento había duplicado la cantidad de PO4-P y triplicado la de NO3-N en la zona eufótica; la producción superficial de fitoplancton y la biomasa primaria y las concentraciones de zooplancton también se duplicaron durante este período. El afloramiento era cerca de 1.5 mimes durante mayo-noviembre y de unos 9.0 mimes durante noviembre-febrero, el total anual es de unos 48 m. La producción media primaria es aproximadamente de 0.3 gC/m2 al día durante mayo-diciembre y cerca de 0.6 gC/m2 al día durante enero-abril; la producción anual es de unos 140 gC/m2. En febrero apareció una convexidad termal que se extendió de la parte norte a la parte sudoeste del Bight. Dentro de esta convexidad se encontró un domo termal marcado el cual coincidió con el centro de la circulación ciclonal de la célula. El afloramiento en el domo tuvo un promedio de 16 mimes en noviembre-febrero. Las pesquerías del Panamá Bight producen anualmente de cerca 30,000 toneladas métricas de especies alimenticias y unas 68,000 t.m. de especies usadas para la reducción. La mayoría de los esfuerzos realizados con el fin de adquirir más conocimiento sobre la ecología del atún no tuvo éxito. La abundancia aparente del atún aleta amarilla y del barrilete en la parte septentrional del Bight parece estar relacionada con el ciclo estacional del afloramiento y del enriquecimiento, ya que la abundancia mayor en abril y mayo cuando parece que hay abundancia es de alimento. El ciclo de vida de la anchoveta en el Golfo de Panamá parece también que está relacionada al afloramiento. La masa de la especie varía de unas 39,000 t.m. en diciembre a cerca de 169,000 t.m. en abril. Aproximadamente 19.1 x 1012 huevos de anchoveta son desovados anualmente. Los ciclos de vida del camarón en el Panamá Bight parecen estar relacionados con el afloramiento ya que las capturas son superiores en mayo-julio, unos 3-5 meses después del ápice del afloramiento, y las capturas anuales se correlacionan inversamente con el nivel del mar. (PDF contains 340 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a preliminary investigation into large-scale atmospheric and surface moisture variations over North America. We compare large-scale hydrologic budgets in the Los Alamos general circulation model (GCM) to observed precipitation and vertically integrated atmospheric moisture fluxes derived from the National Meteorological Center's operational analyses. THe GCM faithfully simulates the integrated flux divergence and P-E differences. However, the integrated moisture content is too low, and precipitation and evaporation are too high. The model produces summertime soil moisture dryness, which supports previous studies showing increased droughts under warmer conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crater Lake has fluctuated in elevation by 5 meters during the 20th Century. Reasons for these fluctuations were investigated as part of a long-term study of the Crater Lake ecosystem. Lake level changes were found to be closely related to precipitation variations. The lake can be thought of as acting as both a giant precipitation gage and as a large evaporation "pan". Winter snowfall variations are related to variations in the Southern Oscillation Index. Crater Lake offers a unique combination of simple geometry and hydrology, and a long record of supporting data, available nowhere else in the world for a caldera lake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the global population has increased, so have human influences on the global environment. ... How can we better understand and predict these natural and potential anthropogenic variations? One way is to develop a model that can accurately describe all the components of the hydrologic cycle, rather than just the end result variables such as precipitation and soil moisture. If we can predict and simulate variations in evaporation and moisture convergence, as well as precipitation, then we will have greater confidence in our ability to at least model precipitation variations. Therefore, we describe here just how well we can model relevant aspects of the global hydrologic cycle. In particular, we determine how well we can model the annual and seasonal mean global precipitation, evaporation, and atmospheric water vapor transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a 2.5-degree gridpoint atmospheric hydrology/climatology of precipitable water, precipitation, atmospheric moisture convergence, and a residual evaporation or evapotranspiration for the coterminous United States. We also describe a large-scale surface hydrology/climatology of a residual soil moisture, streamflow divergence, or runoff, as well as precipitation and evaporation. Annual and seasonal means and interrelationships among various components of the hydrologic cycles are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Powai Lake, an impoundment, came into existence in 1891 when the riverlet Dhanisar was dammed to conserve rainwater for drinking purpose. However, the water was found to be unpotable and the lake was leased out to the Angling Association, Bombay, exclusively for angling and sports. The lake is located about 27 km in the northeast of Bombay city at a height of 55m above MSL. It is rainfed with an average rainfall of 2,400 mm. The maximum waterspread area is 220 ha with a maximum capacity of 8.11 million m super(3) in the peak monsoon period when the water overflows the dam. There is no drawdown from the lake. Fluctuation in the water level is mainly due to evaporation and percolation. Transparency is low mainly due to suspended organic particles. There is hardly any difference in the water temperatures of surface and bottom, hence the annual heat budget is low at 2,818 cal m super(-2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mundel Lake is an extremely shallow lagoon on the west coast of Sri Lanka. It is connected to the Puttalam Lagoon through 15 km long Dutch Canal. Salinity measurements and daily sea level data were obtained fortnightly from January 1993 to March 1994 and they were used to quantify the salt and water budget along with precipitation, evaporation and freshwater runoff. Extreme fluctuations of salinity and sea level are striking features of the system. Salinity of the Mundel Lake and Dutch Canal varied from 5-46.5 and 6 61 ppt respectively while the sea level ranged from -0.25 to +1.2 m. Tidal variations were not seen in the lagoon due to its long narrow canal system. Salt budget showed that the deposition of salt on the lagoon bottom during periods of decreasing water level. During increasing water level, salt is dissolved again. Flow of water through the Dutch Canal between the Puttalam Lagoon and Mundel Lake is driven by the changes in sea level. These changes are mainly due to seasonal changes of net freshwater supply and, to a lesser degree, to seasonal changes in sea surface height. As the flow rates are small due to the long and narrow canal, the residence time ranges between two months and several months in the Mundel Lake, except during season of high freshwater supply. As the water exchange is weak, the Mundel Lake becomes hyper saline with strong fluctuations in salinity. This implies a stress to all lagoon dwelling aquatic organisms and also to aquaculture practices in the area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comparative study was carried out between the two biggest creeks along the Arabian Gulf coast of the United Arab Emirates to evaluate impacts of sewage and industrial effluents on their hydrochemical characteristics. Surface and bottom water samples were collected from Abu Dhabi and Dubai creeks during the period from October 1994 to September 1995. The hydrochemical parameters studied were: temperature (21.10-34.00°C), salinity (37.37-47.09%), transparency (0.50-10.0 m), pH (7.97-8.83), dissolved oxygen (1.78-13.93 mg/l) and nutrients ammonia (ND- 13.12,ug-at N/1), nitrite (ND-6.66 ,ug-at N/1), nitrate (ND- 41.18 ,ug-at N/1), phosphate (ND- 13.06 ,ug-at P/1), silicate (0.68-32.50 ,ug-at Si/1), total phosphorus (0.26- 21.48 ,ug-at P/1), and total silicon (0.95- 40.32 ,ug-at Si/1). The present study indicates clearly that seawater of Abu-Dhabi Creek was warmer (28.l2°C) than Dubai (27.56°C) resulting in a higher rate of evaporation. Owing to more evaporation, salinity levels showed higher levels at Abu Dhabi (43.33%) compared to Dubai (39.03%) seawater. The study also revealed higher secchi disc readings at Abu Dhabi Creek (4.68 m) as compared to Dubai Creek (2.60 m) suggesting more transparency at Abu Dhabi Creek. Whereas, seawater of Dubai exhibited higher levels of pH (1.03 times), and dissolved oxygen (1.05 times) than Abu Dhabi seawater due to an increase in productivity. Meantime, seawater of Dubai showed higher tendency to accumulate ammonia (8.22 times), nitrite (10.93 times), nitrate (5.85 times), phosphate (10.64 times), silicate (1.60 times), total phosphorus (3.19 times), and total silicon (1.54 times) compared to Abu Dhabi seawater due to the enrichment of seawater at Dubai with domestic sewage waters which has distinctly elevated the levels of the nutrient salts particularly in inner-most parts of the creek leading to eutrophication signs. The changes occurred in the receiving creek water of Dubai as a result of waste-water disposal that have also reflected on the atomic ratios of nit: Effect of pollution rogen: phosphorus: silicon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

East African sun-dried fish dipped for 4 seconds in different solutions of pyrethrum and piperonyl butoxide were analysed for insecticide residue limits. All analyses showed residues above the FAO/WHO MRL; exceeding factors of between 7.6 (22.9 ppm) and 1.6 (5.3 ppm) were found for pyrethrum while exceeding factors between 5.1 (102 ppm) and 1.7 (33.1 ppm) were common for piperonyl butoxide after 6 months storage at ambient temperature. All insecticide treated fish, regardless of dip concentration, were observed to be less susceptible to infestation by Dermestes maculatus than samples of untreated fish. No dry weight losses due to insect infestation were recorded, however moisture evaporation caused weight losses between 6 and 8% during the period. Further investigations showed that careful handling and a dip concentration more in accordance with FAO/WHO MRL than the commercial practice will reduce the cost of insecticides from K.sh. 0.72 to K.sh. 0.23 per kg pyrethrum treated fish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aimed production of a new product with various texture and sensory properties in chase of the impetus for increasing human consumption considering suitable resources of Kilka fish in Caspian Sea. Following deheading, gutting, and brining, common Kilka were battered in two different formulations, i.e. simple batter and tempura batter, via automated predusting machinery and then, they were fried through flash frying for 30 seconds at 170°C in sunflower oil after they were breaded with bread crumbs flour. The products were subjected to continuous freezing at -40°C and were kept at -18°C in cold storage for four months once they were packed. Chemical composition (protein, fat, moisture, and ash), fatty acid profiles (29 fatty acids), chemical indices of spoilage (peroxide value, thiobarbituric acid, free fatty acids, and volatile nitrogen), and microbial properties (total bacteria count and coliform count) were compared in fresh and breaded Kilka at various times before frying (raw breaded Kilka), after frying (zero-phase), and in various months of frozen storage (phases 1, 2, 3, and 4). Organoleptic properties of breaded Kilka (i.e. odor, taste, texture, crispiness, cohesiveness of batter) and general acceptability in the phases 0, 1, 2, 3, and 4 were evaluated. The results obtained from chemical composition and fatty acid profiles in common Kilka denoted that MUFA, PUFA, and SFA were estimated to be 36.96, 32.85, and 29.12 g / 100g lipid, respectively. Levels of ù-3 and ù-6 were 7.6 and 1.12 g / 100 gr lipid, respectively. Docosahexaonoic acid (20.79%) was the highest fatty acid in PUFA group. ù-3/ù-6 and PUFA/SFA ratios were 7.6 and 1.12, respectively. The high rates of the indices and high percentage of ù-3 fatty acid in common Kilka showed that the fish can be considered as invaluable nutritional and fishery resources and commonsensical consumption of the species may reduce the risk of cardiovascular diseases. Frying breaded Kilka affected overall fat and moisture contents so that moisture content in fried breaded Kilka decreased significantly compared to raw breaded Kilka, while it was absolutely reverse for fat content. Overall fat content in tempura batter treatment was significantly lower than that of simple batter treatment (P≤0.05). Presence of hydrocolloids, namely proteins, starch, gum, and other polysaccharides, in tempura batter may prohibit moisture evaporation and placement with oil during frying process in addition to boosting water holding capacity through confining water molecules. During frying process, fatty acids composition of breaded Kilka with various batters changed so that rates of some fatty acids such as Palmitic acid (C16:0), Stearic acid (C18:0), Oleic acid (C18:1 ù-9cis), and linoleic acid (C18:3 ù-3) increased considerably following frying; however, ù-3/ù-6, PUFA/SFA, and EPA+DHA/C16:0 ratios (Polyan index) decreased significantly after frying. ù-3/ù-6, PUFA/SFA, and EPA+DHA/C16:0 ratios in tempura batter treatment were higher than those of simple batter treatment which is an indicator of higher nutritional value of breaded Kilka with tempura batter. Significant elevations were found in peroxide, thiobarbituric acid, and free fatty acids in fried breaded Kilka samples compared to raw samples which points to fat oxidation during cooking process. Overall microorganism count and coliform count decreased following heating process. Both breaded Kilka samples were of high sanitation quality at zero-phase according to ICMSF Standard. The results acquired from organoleptic evaluation declared that odor, cohesiveness, and general acceptability indices, among others, had significant differences between the treatments (P≤0.05). In all evaluated properties, breaded Kilka with tempura batter in different phases gained higher scores than breaded Kilka with simple batter. During cold storage of various treatments of breaded Kilka, total lipid content, PUFA, MUFA, ù-3, ù- 3/ù-6, PUFA/SFA, Polyen index decreased significantly. The mentioned reductions in addition to significant elevation of spoilage indices, namely peroxide, thiobarbituric acid, and free fatty acids, during frozen storage, indicate to oxidation and enzymatic mechanism activity during frozen storage of breaded Kilka. Considering sensory evaluation at the end of the fourth month and TVB-N contents exceeded eligible rate in the fourth month, shelf life of the products during frozen storage was set to be three months at -18°C. The results obtained from statistical tests indicate to better quality of breaded Kilka processed with tempura batter compared to simple batter in terms of organoleptic evaluation, spoilage indices, and high quality of fat in various sampling phases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the freshwater and seawater budgets, the mean in/out water fluxes as well as the monthly changes in freshwater content were determined in Lake Manzalah. About 6693 x 10^6m^3 of fresh and brackish water inflow to the lake annually through the main drains discharging into the southeastern basin. Allowances of precipitation (105.7 x 10^6m^3/y) and evaporation (1075 x 10^6m^3/y) yield a net runoff of 5723 x 10^6m^3/y. The average changes in the freshwater content (dF) of the lake was 547.0 x 10^6m^3 with the maximum i.e. 72.4 x 10^6m^3 in July. Using the quantity of inflowing and outflowing water through Boughaz El-Gamil (Lake-Sea connection), the change in water volume relative to sea level change was 549 x 10^6m^3/y. The sea-level height (dh) induced an average monthly change of 6.5 cm. Using the amount of freshwater discharge as well as the lake volume, the lake water is replaced every 48 days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aquaculture systems are an integral element of rural development and therefore should be environment friendly as well as socially and economically designed. From the economic standpoint, one of the major constraints for the development of sustainable aquaculture includes externalities generated by competition in access to a limited resource. This study was conducted as an investigation into the water requirement for the hatchery and nursery production phases of common carp, Cyprinus carpio (Linnaeus, 1758) at the Maharashtra State Fish Seed Farm at Khopoli in Raigad Dist. of Maharashtra during the winter months from November to February. The water budgeting study involves the quantification of water used in every stage of production in hatchery and nursery systems and aimed at becoming a foundation for the minimization of water during production without affecting the yield; thereby conserving water and upholding the theme of sustainable aquaculture. The total water used in a single operation cycle was estimated to be 11,25,040 L [sic]. Out of the total water consumed, 4.74% water was used in the pre-operational management steps, 4.48% was consumed during breeding, 62.72% was consumed in the hatching phase, 21.50% was used for hatchery rearing and 6.56% was consumed during conditioning. In the nursery ponds, the water gain was primarily the regulated inflow coming through the irrigation channel. The total quantum of water used in the nursery rearing was 31,60,800 L [sic]. The initial filling and regulated inflow formed 42.60% and 57.40% respectively of water gain, while evaporation, seepage and discharge contributed 20.71%, 36.46% and 42.82% respectively to the water loss. The total water expended for the entire operation was 1,21,61,120 L [sic]. Water expense occurred to produce a single spawn in the hatchery system was calculated and found to be 0.56 L while the water expended to produce one fry was calculated as 4.86 L. The study fulfills the hydrological equation described by Winter (1981) and Boyd (1985). It also validates the water budget simulation model that can be used for forecasting water requirements for aquaculture ponds (Nath and Bolte, 1998).