4 resultados para Eulerþs angles
em Aquatic Commons
Resumo:
In this study, phase angle (the ratio of resistance and reactance of tissue to applied electrical current) is presented as a possible new method to measure fish condition. Condition indices for fish have historically been based on simple weight-at-length relationships, or on costly and timeconsuming laboratory procedures that measure specific physiological parameters. Phase angle is introduced to combine the simplicity of a quick field-based measurement with the specificity of laboratory analysis by directly measuring extra- and intracellular water distribution within an organism, which is indicative of its condition. Phase angle, which can be measured in the field or laboratory in the time it takes to measure length and weight, was measured in six species of fish at different states (e.g., fed vs. fasted, and postmortem) and under different environmental treatments (wild vs. hatchery, winter vs. spring). Phase angle reflected different states of condition. Phase angles <15° indicated fish in poor condition, and phase angles >15° indicated fish that were in better condition. Phase angle was slightly affected by temperatures (slope = – 0.19) in the 0–8°C range and did not change in fish placed on ice for <12 hours. Phase angle also decreased over time in postmortem fish because of cell membrane degradation and subsequent water movement from intra- to extracellular (interstitial) spaces. Phase angle also reflected condition of specific anatomical locations within the fish.
Resumo:
Rockfishes (Sebastes spp.) tend to aggregate near rocky, cobble, or generally rugged areas that are difficult to survey with bottom trawls, and evidence indicates that assemblages of rockfish species may differ between areas accessible to trawling and those areas that are not. Consequently, it is important to determine grounds that are trawlable or untrawlable so that the areas where trawl survey results should be applied are accurately identified. To this end, we used multibeam echosounder data to generate metrics that describe the seafloor: backscatter strength at normal and oblique incidence angles, the variation of the angle-dependent backscatter strength within 10° of normal incidence, the scintillation of the acoustic intensity scattered from the seafloor, and the seafloor rugosity. We used these metrics to develop a binary classification scheme to estimate where the seafloor is expected to be trawlable. The multibeam echosounder data were verified through analyses of video and still images collected with a stereo drop camera and a remotely operated vehicle in a study at Snakehead Bank, ~100 km south of Kodiak Island in the Gulf of Alaska. Comparisons of different combinations of metrics derived from the multibeam data indicated that the oblique-incidence backscatter strength was the most accurate estimator of trawlability at Snakehead Bank and that the addition of other metrics provided only marginal improvements. If successful on a wider scale in the Gulf of Alaska, this acoustic remote-sensing technique, or a similar one, could help improve the accuracy of rockfish stock assessments.
Resumo:
The design and construction of the otter board is a subject of great importance for economy in trawling. This review incorporates a historical resume tracing the change and development• of otter boards. The size of the otter board and its relationship with the horse power of the engine and size of the net and the methods of rigging are dealt with. The factors influencing the horizontal spread are discussed. The effect of the angles of attack, heel and tilt and the ground reaction on the force coefficients have been reviewed and discussed with particular reference to flat rectangular otter boards used for bottom trawling. A short account of other designs of otter boards used for improved efficiency is given. Suggestion for improving the efficacy of otter boards based on the work hitherto done has been made. The contributions relating to the various aspects of design and performance of trawl boards carried out till 1969 have been considered.
Resumo:
In order to determine effective pulse limits for Salmo irideus, Cyprinus carpio, Gasterosteus aculeatus, Tinca tinca, Salmo fario and ldus melanotus in impulse D. C. for galvanotaxis and galvanonarcosis, studies were carried out with rectangular and square impulses. The narcotizing pulse limits remained constant for each variety in an impulse D. C. of specific wave form. The anodic effect of fishes was better in square wave form and varied with the variation of temperature of surrounding medium. S. fario reacted better when placed parallel to the lines of electrical force. Transversal escape movement occured when the axis of fish body was at right angles to the direction of current.