3 resultados para Estimation error
em Aquatic Commons
Resumo:
Quantifying scientific uncertainty when setting total allowable catch limits for fish stocks is a major challenge, but it is a requirement in the United States since changes to national fisheries legislation. Multiple sources of error are readily identifiable, including estimation error, model specification error, forecast error, and errors associated with the definition and estimation of reference points. Our focus here, however, is to quantify the influence of estimation error and model specification error on assessment outcomes. These are fundamental sources of uncertainty in developing scientific advice concerning appropriate catch levels and although a study of these two factors may not be inclusive, it is feasible with available information. For data-rich stock assessments conducted on the U.S. west coast we report approximate coefficients of variation in terminal biomass estimates from assessments based on inversion of the assessment of the model’s Hessian matrix (i.e., the asymptotic standard error). To summarize variation “among” stock assessments, as a proxy for model specification error, we characterize variation among multiple historical assessments of the same stock. Results indicate that for 17 groundfish and coastal pelagic species, the mean coefficient of variation of terminal biomass is 18%. In contrast, the coefficient of variation ascribable to model specification error (i.e., pooled among-assessment variation) is 37%. We show that if a precautionary probability of overfishing equal to 0.40 is adopted by managers, and only model specification error is considered, a 9% reduction in the overfishing catch level is indicated.
Resumo:
Abstract Growth and condition of fish are functions of available food and environmental conditions. This led to the idea of using fish as a “consumption sensor” for the measurement of food intake over a defined period of time. A bio-physical model for the estimation of food consumption was developed based on the von Bertalanffy model. Whereas some of the input variables of the model, the initial and final lengths and masses of a fish and the temperature within the time period considered can easily be measured, internal characteristics of the species have to be determined indirectly. Three internal parameters are used in the model: the maintenance consumption at 0°C, the temperature dependence of this consumption and the food efficiency, the percentage of the ingested food utilized. Estimates of the parameters for a given species can be determined by feeding experiments. Here, data from published feeding experiments on juvenile cod, Gadus morhua L., were used to validate the model. The average of the relative error for the food intake predicted by the model for individual fish was about 24 %, indicating that fish used the food with different efficiencies. However, grouping the fish according to size classes and temperature lowered the relative error of the predicted food intake for the group to typically 5 %. For a group containing all fish of the feeding experiment the relative prediction error was about 2 %. Zusammenfassung Wachstum und Kondition der Fische sind von der verfügbaren Nahrung und von Umweltbedingungen abhängig. Dies führte zur Idee, Fisch als „Konsum-Sensor“ für die Messung der Nahrungsaufnahme über einen definierten Zeitraum zu verwenden. Auf Grundlage des von Bertalanffy-Modells wurde ein bio-physikalisches Modell zur Schätzung der Futteraufnahme entwickelt. Während einige der Eingangsgrößen des Modells leicht gemessen werden können (Anfangs- und Endlänge und -körpermasse der Fische und die Temperatur innerhalb des betrachteten Zeitraum), können interne Parameter der betrachteten Art nur indirekt bestimmt werden. Drei interne Parameter werden in dem Modell verwendet: Die Erhaltungskonsumtion bei 0° C, die Temperaturabhängigkeit dieser Rate und der Wirkungsgrad der Nahrung (der Anteil der Nahrung ,der aufgenommen und verwendet und nicht ungenutzt wieder ausgeschieden wird). Die Modellparameter für eine bestimmte Art können durch Fütterungsversuche bestimmt werden. Um das Modell zu validieren wurden Daten aus veröffentlichten Fütterungsversuchen mit juvenilen Kabeljau (Gadus morhua L.) verwendet. Modell und Wirklichkeit weichen in der Regel voneinander ab. Der durchschnittliche relative Fehler der durch das Modell vorhergesagten Nahrungsaufnahme betrug für Einzelfische etwa 24%, was darauf hinweist, dass einzelne Fisch die Nahrung mit unterschiedlichen Wirkungsgraden verwerten. Allerdings senkte die Gruppierung der Fische nach Größenklassen und Temperatur den relativen Vorhersagefehler für die Nahrungsaufnahme der Gruppe auf etwa 5%. Für alle Fische im Fütterungsversuch ist der relative Vorhersagefehler etwa 2%.
Resumo:
Growth is one of the most important characteristics of cultured species. The objective of this study was to determine the fitness of linear, log linear, polynomial, exponential and Logistic functions to the growth curves of Macrobrachium rosenbergii obtained by using weekly records of live weight, total length, head length, claw length, and last segment length from 20 to 192 days of age. The models were evaluated according to the coefficient of determination (R2), and error sum off square (ESS) and helps in formulating breeders in selective breeding programs. Twenty full-sib families consisting 400 PLs each were stocked in 20 different hapas and reared till 8 weeks after which a total of 1200 animals were transferred to earthen ponds and reared up to 192 days. The R2 values of the models ranged from 56 – 96 in case of overall body weight with logistic model being the highest. The R2 value for total length ranged from 62 to 90 with logistic model being the highest. In case of head length, the R2 value ranged between 55 and 95 with logistic model being the highest. The R2 value for claw length ranged from 44 to 94 with logistic model being the highest. For last segment length, R2 value ranged from 55 – 80 with polynomial model being the highest. However, the log linear model registered low ESS value followed by linear model for overall body weight while exponential model showed low ESS value followed by log linear model in case of head length. For total length the low ESS value was given by log linear model followed by logistic model and for claw length exponential model showed low ESS value followed by log linear model. In case of last segment length, linear model showed lowest ESS value followed by log linear model. Since, the model that shows highest R2 value with low ESS value is generally considered as the best fit model. Among the five models tested, logistic model, log linear model and linear models were found to be the best models for overall body weight, total length and head length respectively. For claw length and last segment length, log linear model was found to be the best model. These models can be used to predict growth rates in M. rosenbergii. However, further studies need to be conducted with more growth traits taken into consideration