104 resultados para Erosion rates

em Aquatic Commons


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Management of coastal development in Hawaii is based on the location of the certified shoreline, which is representative of the upper limit of marine inundation within the last several years. Though the certified shoreline location is significantly more variable than long-term erosion indicators, its migration will still follow the coastline's general trend. The long-term migration of Hawaii’s coasts will be significantly controlled by rising sea level. However, land use decisions adjacent to the shoreline and the shape and nature of the nearshore environment are also important controls to coastal migration. Though each of the islands has experienced local sea-level rise over the course of the last century, there are still locations across the islands of Kauai, Oahu, and Maui, which show long- term accretion or anomalously high erosion rates relative to their regions. As a result, engineering rules of thumb such as the Brunn rule do not always predict coastal migration and beach profile equilibrium in Hawaii. With coastlines facing all points of the compass rose, anthropogenic alteration of the coasts, complex coastal environments such as coral reefs, and the limited capacity to predict coastal change, Hawaii will require a more robust suite of proactive coastal management policies to weather future changes to its coastline. Continuing to use the current certified shoreline, adopting more stringent coastal setback rules similar to Kauai County, adding realistic sea-level rise components for all types of coastal planning, and developing regional beach management plans are some of the recommended adaptation strategies for Hawaii. (PDF contains 4 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Approximately two-thirds of coastal and Great Lakes states have some type of shoreline construction setback or construction control line requiring development to be a certain distance from the shoreline or other coastal feature (OCRM, 2008). Nineteen of 30 coastal states currently use erosion rates for new construction close to the shoreline. Seven states established setback distances based on expected years from the shoreline: the remainder specify a fixed setback distance (Heinz Report, 2000). Following public hearings by the County of Kauai Planning Commission and Kauai County Council, the ‘Shoreline Setback and Coastal Protection Ordinance’ was signed by the Mayor of Kauai on January 25, 2008. After a year of experience implementing this progressive, balanced shoreline setback ordinance several amendments were recently incorporated into the Ordinance (#887; Bill #2319 Draft 3). The Kauai Planning Department is presently drafting several more amendments to improve the effectiveness of the Ordinance. The intent of shoreline setbacks is to establish a buffer zone to protect shorefront development from loss due to coastal erosion - for a period of time; to provide protection from storm waves; to allow the natural dynamic cycles of erosion and accretion of beaches and dunes to occur; to maintain beach and dune habitat; and, to maintain lateral beach access and open space for the enjoyment of the natural shoreline environment. In addition, a primary goal of the Kauai setback ordinance is to avoid armoring or hardening of the shore which along eroding coasts has been documented to ultimately eliminate the fronting beach. (PDF contains 4 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Beachfront jurisdictional lines were established by the South Carolina Beachfront Management Act (SC Code §48- 39-250 et seq.) in 1988 to regulate the new construction, repair, or reconstruction of buildings and erosion control structures along the state’s ocean shorelines. Building within the state’s beachfront “setback area” is allowed, but is subject to special regulations. For “standard beaches” (those not influenced by tidal inlets or associated shoals), a baseline is established at the crest of the primary oceanfront sand dune; for “unstabilized inlet zones,” the baseline is drawn at the most landward point of erosion during the past forty years. The parallel setback line is then established landward of the baseline a distance of forty times the long-term average annual erosion rate (not less than twenty feet from the baseline in stable or accreting areas). The positions of the baseline and setback line are updated every 8-10 years using the best available scientific and historical data, including aerial imagery, LiDAR, historical shorelines, beach profiles, and long-term erosion rates. One advantage of science-based setbacks is that, by using actual historical and current shoreline positions and beach profile data, they reflect the general erosion threat to beachfront structures. However, recent experiences with revising the baseline and setback line indicate that significant challenges and management implications also exist. (PDF contains 3 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coastal managers need accessible, trusted, tailored resources to help them interpret climate information, identify vulnerabilities, and apply climate information to decisions about adaptation on regional and local levels. For decades, climate scientists have studied the impacts that short term natural climate variability and long term climate change will have on coastal systems. For example, recent estimates based on Intergovernmental Panel on Climate Change (IPCC) warming scenarios suggest that global sea levels may rise 0.5 to 1.4 meters above 1990 levels by 2100 (Rahmstorf 2007; Grinsted, Moore, and Jevrejeva 2009). Many low-lying coastal ecosystems and communities will experience more frequent salt water intrusion events, more frequent coastal flooding, and accelerated erosion rates before they experience significant inundation. These changes will affect the ways coastal managers make decisions, such as timing surface and groundwater withdrawals, replacing infrastructure, and planning for changing land use on local and regional levels. Despite the advantages, managers’ use of scientific information about climate variability and change remains limited in environmental decision-making (Dow and Carbone 2007). Traditional methods scientists use to disseminate climate information, like peer-reviewed journal articles and presentations at conferences, are inappropriate to fill decision-makers’ needs for applying accessible, relevant climate information to decision-making. General guides that help managers scope out vulnerabilities and risks are becoming more common; for example, Snover et al. (2007) outlines a basic process for local and state governments to assess climate change vulnerability and preparedness. However, there are few tools available to support more specific decision-making needs. A recent survey of coastal managers in California suggests that boundary institutions can help to fill the gaps between climate science and coastal decision-making community (Tribbia and Moser 2008). The National Sea Grant College Program, the National Oceanic and Atmospheric Administration's (NOAA) university-based program for supporting research and outreach on coastal resource use and conservation, is one such institution working to bridge these gaps through outreach. Over 80% of Sea Grant’s 32 programs are addressing climate issues, and over 60% of programs increased their climate outreach programming between 2006 and 2008 (National Sea Grant Office 2008). One way that Sea Grant is working to assist coastal decision-makers with using climate information is by developing effective methods for coastal climate extension. The purpose of this paper is to discuss climate extension methodologies on regional scales, using the Carolinas Coastal Climate Outreach Initiative (CCCOI) as an example of Sea Grant’s growing capacities for climate outreach and extension. (PDF contains 3 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A summary is presented of research conducted on beach erosion associated with extreme storms and sea level rise. These results were developed by the author and graduate students under sponsorship of the University of Delaware Sea Grant Program. Various shoreline response problems of engineering interest are examined. The basis for the approach is a monotonic equilibrium profile of the form h = Ax2 /3 in which h is water depth at a distance x from the shoreline and A is a scale parameter depending primarily on sediment characteristics and secondarily on wave characteristics. This form is shown to be consistent with uniform wave energy dissipation per unit volume. The dependency of A on sediment size is quantified through laboratory and field data. Quasi-static beach response is examined to represent the effect of sea level rise. Cases considered include natural and seawalled profiles. To represent response to storms of realistic durations, a model is proposed in which the offshore transport is proportional to the "excess" energy dissipation per unit volume. The single rate constant in this model was evaluated based on large scale wave tank tests and confirmed with Hurricane Eloise pre- and post-storm surveys. It is shown that most hurricanes only cause 10% to 25% of the erosion potential associated with the peak storm tide and wave conditions. Additional applications include profile response employing a fairly realistic breaking model in which longshore bars are formed and long-term (500 years) Monte Carlo simulation including the contributions due to sea level rise and random storm occurrences. (PDF has 67 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salvinia (Salvinia minima Willd.) is a water fern found in Florida waters, usually associated with Lemna and other small free-floating species. Due to its buoyancy and mat-forming abilities, it is spread by moving waters. In 1994, salvinia was reported to be present in 247 water bodies in the state (out of 451 surveyed public waters, Schardt 1997). It is a small, rapidly growing species that can become a nuisance due to its explosive growth rates and its ability to shade underwater life (Oliver 1993). Any efforts toward management of salvinia populations must consider that, in reasonable amounts, its presence is desirable since it plays an important role in the overall ecosystem balance. New management alternatives need to be explored besides the conventional herbicide treatments; for example, it has been shown that the growth of S. molesta can be inhibited by extracts of the tropical weed parthenium (Parthenium hysterophorus) and its purified toxin parthenin (Pande 1994, 1996). We believe that cattail, Typha spp. may be a candidate for control of S. minima infestations. Cattail is an aggressive aquatic plant, and has the ability to expand over areas that weren't previously occupied by other species (Gallardo et al. 1998a and references cited there). In South Florida, T. domingensis is a natural component of the Everglades ecosystem, but in many cases it has become the dominant marsh species, outcompeting other native plants. In Florida public waters, this cattail species is the most dominant emergent species of aquatic plants (Schardt 1997). Several factors enable it to accomplish opportunistic expansion, including size, growth habits, adaptability to changes in the surroundings, and the release of compounds that can prevent the growth and development of other species. We have been concerned in the past with the inhibitory effects of the T. domingensis extracts, and the phenolic compounds mentioned before, towards the growth and propagation of S. minima (Gallardo et al. 1998b). This investigation deals with the impact of cattail materials on the rates of oxygen production of salvinia, as determined through a series of Warburg experiments (Martin et al. 1987, Prindle and Martin 1996).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ENGLISH: In this paper, a method of analysis described by Gulland (1963) has been used to estimate the fishing mortality rates of tagged yellowfin and skipjack tuna for specific areas and years. Fishing mortality rates obtained for tagged tunas will also represent those for the entire population from which the tagged fishes were drawn, provided the assumptions used and corrections made for these analyses are valid. Total mortality rates of tagged fishes have also been computed. These are not assumed to be directly equivalent to the total mortality rates of the untagged populations,since tagged fishes are subject to additional types of attrition. These additional sources of mortality are also examined in this study. SPANISH: En el presente trabajo se ha usado un método de análisis descrito por Gulland (1963), para estimar las tasas de mortalidad de pesca de los atunes aleta amarilla y barrilete marcados en áreas y años específicos. Las tasas de mortalidad de pesca obtenidas en atunes marcados representarán también las de toda la población, de la cual fueron extraídos, previendo que las suposiciones usadas y las correcciones hechas para estos análisis sean válidas. Las tasas de mortalidad total de los peces marcados también han sido computadas. No se supone que éstas sean directamente equivalentes a las tasas de mortalidad total de las poblaciones no marcadas, ya que los peces marcados están sujetos también a otros tipos de pérdida. Estas otras causas de mortalidad son examinadas también en el presente estudio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fisheries management actions taken to protect one species can have unintended, and sometimes positive, consequences on other species. For example, regulatory measures to reduce fishing effort in the winter gillnet fishery for spiny dogfish (Squalus acanthias) off North Carolina (NC) also led to decreases in the number of bycaught bottlenose dolphins (Tursiops truncatus). This study found that a marked decrease in fishing effort for spiny dogfish in NC also corresponded with a marked decrease in winter stranding rates of bottlenose dolphins with entanglement lesions (P= 0.002). Furthermore, from 1997 through 2002, there was a significant positive correlation (r2 = 0.79; P= 0.0003) between seasonal bycatch estimates of bottlenose dolphins in gill nets and rates of stranded dolphins with entanglement lesions. With this information, stranding thresholds were developed that would enable the detection of those increases in bycatch in near real-time. This approach is valuable because updated bycatch estimates from observer data usually have a time-lag of two or more years. Threshold values could be used to detect increases in stranding rates, triggering managers immediately to direct observer effort to areas of potentially high bycatch or to institute mitigation measures. Thus, observer coverage and stranding investigations can be used in concert for more effective fishery management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: This report summarizes the results of NOAA's sediment toxicity, chemistry, and benthic community studies in the Chesapeake Bay estuary. As part of the National Status and Trends (NS&T) Program, NOAA has conducted studies to determine the spatial extent and severity of chemical contamination and associated adverse biological effects in coastal bays and estuaries of the United States since 1991. Sediment contamination in U.S. coastal areas is a major environmental issue because of its potential toxic effects on biological resources and often, indirectly, on human health. Thus, characterizing and delineating areas of sediment contamination and toxicity and demonstrating their effect(s) on benthic living resources are viewed as important goals of coastal resource management. Benthic community studies have a history of use in regional estuarine monitoring programs and have been shown to be an effective indicator for describing the extent and magnitude of pollution impacts in estuarine ecosystems, as well as for assessing the effectiveness of management actions. Chesapeake Bay is the largest estuarine system in the United States. Including tidal tributaries, the Bay has approximately 18,694 km of shoreline (more than the entire US West Coast). The watershed is over 165,000 km2 (64,000 miles2), and includes portions of six states (Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia) and the District of Columbia. The population of the watershed exceeds 15 million people. There are 150 rivers and streams in the Chesapeake drainage basin. Within the watershed, five major rivers - the Susquehanna, Potomac, Rappahannock, York and James - provide almost 90% of the freshwater to the Bay. The Bay receives an equal volume of water from the Atlantic Ocean. In the upper Bay and tributaries, sediments are fine-grained silts and clays. Sediments in the middle Bay are mostly made of silts and clays derived from shoreline erosion. In the lower Bay, by contrast, the sediments are sandy. These particles come from shore erosion and inputs from the Atlantic Ocean. The introduction of European-style agriculture and large scale clearing of the watershed produced massive shifts in sediment dynamics of the Bay watershed. As early as the mid 1700s, some navigable rivers were filled in by sediment and sedimentation caused several colonial seaports to become landlocked. Toxic contaminants enter the Bay via atmospheric deposition, dissolved and particulate runoff from the watershed or direct discharge. While contaminants enter the Bay from several sources, sediments accumulate many toxic contaminants and thus reveal the status of input for these constituents. In the watershed, loading estimates indicate that the major sources of contaminants are point sources, stormwater runoff, atmospheric deposition, and spills. Point sources and urban runoff in the Bay proper contribute large quantities of contaminants. Pesticide inputs to the Bay have not been quantified. Baltimore Harbor and the Elizabeth River remain among the most contaminated areas in the Unites States. In the mainstem, deep sediment core analyses indicate that sediment accumulation rates are 2-10 times higher in the northern Bay than in the middle and lower Bay, and that sedimentation rates are 2-10 times higher than before European settlement throughout the Bay (NOAA 1998). The core samples show a decline in selected PAH compounds over the past several decades, but absolute concentrations are still 1 to 2 orders of magnitude above 'pristine' conditions. Core data also indicate that concentrations of PAHs, PCBs and, organochlorine pesticides do not demonstrate consistent trends over 25 years, but remain 10 times lower than sediments in the tributaries. In contrast, tri-butyl-tin (TBT) concentrations in the deep cores have declined significantly since it=s use was severely restricted. (PDF contains 241 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth data obtained from a ten-year collection of scales from Maryland freshwater fish is presented, in this report,in graphs and tables especially designed to be useful for Maryland fishery management. (PDF contains 40 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ENGLISH: Tag release and return data for the Baja California and Gulf of Guayaquil areas were selected for this study because substantial numbers of returns resulted from these releases and because the effects of emigration are small in these areas. The returns of tags per unit of fishing effort for several experiments in each area were used to estimate the coefficients of total mortality and shedding. The coefficient of annual natural mortality was estimated to be less than 2.0, which is in agreement with a previous estimate of 0.8, but does not improve upon it. The estimates for the average coefficients of catchability are 2.02 X 10-3 for the Baja California area and 0.67 X 10-3 for the Gulf of Guayaquil area. SPANISH: Se seleccionaron para este estudio algunos da tos de liberación y retorno de marcas en las áreas de Baja California y el Golfo de Guayaquil debido a que cantidades substanciales de retornos resultaron de estas liberaciones y porque los efectos de migración son pequeños en estas áreas. Los retornos de marcas por unidad de esfuerzo de pesca de varios experimentos en cada área fueron empleados para estimar los coeficientes de mortalidad total y desprendimiento. Se estimó que el coeficiente de mortalidad natural anual fue inferior a 2.0, lo que está de acuerdo con una estimación anterior de 0.8, pero no la mejora. Las estimaciones de los coeficientes promedios de capturabilidad son 2.02 X 10-3 en el área de Baja California y 0.67 X 10-3 en el área del Golfo de Guayaquil. (PDF contains 58 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ENGLISH: Return data for single-tagged fish and for double-tagged fish which had retained one or both tags were used to estimate the rates of shedding of dart tags from yellowfin tuna. The Type-1 shedding, which occurs immediately after release of the fish, is about 10 percent. The Type-2 shedding is assumed to be constant throughout the life of the fish after tagging; it occurs at an instantaneous rate of about 0.278 per year. SPANISH: Se emplearon los datos de retorno de peces marcados con una sola marca y de peces marcados con doble marca los cuales han retenido una o dos marcas para estimar las tasas de pérdida de las marcas de dardo de atunes aleta amarilla. El Tipo-l de pérdida, que ocurre inmediatamente después de haber liberado el pez, es aproximadamente del 10 por ciento. El Tipo-2 de pérdida se supone que sea constante durante la vida del pez después de marcado; ocurre en una tasa instantánea cerca de 0.278 por año. (PDF contains 24 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the autumn session of the ICES Advisory Committee for Fisheries Management (ACFM) the stock of the Arctic, Northern and Southern Shelf, North Sea and Skagerrak have been analysed and assessed, as well as the mackerel and horse mackerel, sardine, anchovy and Pandalus, eel and harp and hooded seals. For a number of stocks ICES recommends a reduction in fishing mortality. Moreover, ICES recommends for many stocks to establish recovery and management plans, to safe guarda continuous development of the stocks towards safe biological limits.