5 resultados para Energy based approach

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The requirement of setting annual catch limits to prevent overfishing has been added to the Magnuson-Stevens Fishery Conservation and Management Reauthorization Act of 2006 (MSRA). Because this requirement is new, a body of applied scientific practice for deriving annual catch limits and accompanying targets does not yet exist. This article demonstrates an approach to setting levels of catch that is intended to keep the probability of future overfishing at a preset low level. The proposed framework is based on stochastic projection with uncertainty in population dynamics. The framework extends common projection methodology by including uncertainty in the limit reference point and in management implementation, and by making explicit the risk of overfishing that managers consider acceptable. The approach is illustrated with application to gag (Mycteroperca microlepis), a grouper that inhabits the waters off the southeastern United States. Although devised to satisfy new legislation of the MSRA, the framework has potential application to any fishery where the management goal is to limit the risk of overfishing by controlling catch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Synoptic dendroclimatology uses dated tree rings to study and reconstruct climate from the viewpoint of the climate's weather components and their relationship to atmospheric circulation. This approach defines a connection between large-scale circulation and ring-width variation at local sites using correlation fields, composite maps, indexing, and other circulation-based methodologies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the North Pacific Ocean, an ecosystem-based fishery management approach has been adopted. A significant objective of this approach is to reduce interactions between fishery-related activities and protected species. We review management measures developed by the North Pacific Fishery Management Council and the National Marine Fisheries Service to reduce effects of the groundfish fisheries off Alaska on marine mammals and seabirds, while continuing to provide economic opportunities for fishery participants. Direct measures have been taken to mitigate known fishery impacts, and precautionary measures have been taken for species with potential (but no documented) interactions with the groundfish fisheries. Area closures limit disturbance to marine mammals at rookeries and haulouts, protect sensitive benthic habitat, and reduce potential competition for prey resources. Temporal and spatial dispersion of catches reduce the localized impact of fishery removals. Seabird avoidance measures have been implemented through collaboration with fishery participants and have been highly successful in reducing seabird bycatch. Finally, a comprehensive observer monitoring program provides data on the location and extent of bycatch of marine mammals and seabirds. These measures provide managers with the flexibility to adapt to changes in the status of protected species and evolving conditions in the fisheries. This review should be useful to fishery managers as an example of an ecosystem-based approach to protected species management that is adaptive and accounts for multiple objectives.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the face of dramatic declines in groundfish populations and a lack of sufficient stock assessment information, a need has arisen for new methods of assessing groundfish populations. We describe the integration of seafloor transect data gathered by a manned submersible with high-resolution sonar imagery to produce a habitat-based stock assessment system for groundfish. The data sets used in this study were collected from Heceta Bank, Oregon, and were derived from 42 submersible dives (1988–90) and a multibeam sonar survey (1998). The submersible habitat survey investigated seafloor topography and groundfish abundance along 30-minute transects over six predetermined stations and found a statistical relationship between habitat variability and groundfish distribution and abundance. These transects were analyzed in a geographic information system (GIS) by using dynamic segmentation to display changes in habitat along the transects. We used the submersible data to extrapolate fish abundance within uniform habitat patches over broad areas of the bank by means of a habitat classification based on the sonar imagery. After applying a navigation correction to the submersible-based habitat segments, a good correlation with major boundaries on the backscatter and topographic boundaries on the imagery were apparent. Extrapolation of the extent of uniform habitats was made in the vicinity of the dive stations and a preliminary stock assessment of several species of demersal fish was calculated. Such a habitat-based approach will allow researchers to characterize marine communities over large areas of the seafloor.