3 resultados para Endurance athletes

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) Workshop "Making Oxygen Measurements Routine Like Temperature" was convened in St. Petersburg, Florida, January 4th - 6th, 2006. This event was sponsored by the University of South Florida (USF) College of Marine Science, an ACT partner institution and co-hosted by the Ocean Research Interactive Observatory Networks (ORION). Participants from researcldacademia, resource management, industry, and engineering sectors collaborated with the aim to foster ideas and information on how to make measuring dissolved oxygen a routine part of a coastal or open ocean observing system. Plans are in motion to develop large scale ocean observing systems as part of the US Integrated Ocean Observing System (100s; see http://ocean.us) and the NSF Ocean Observatory Initiative (001; see http://www.orionprogram.org/00I/default.hl). These systems will require biological and chemical sensors that can be deployed in large numbers, with high reliability, and for extended periods of time (years). It is also likely that the development cycle for new sensors is sufficiently long enough that completely new instruments, which operate on novel principles, cannot be developed before these complex observing systems will be deployed. The most likely path to development of robust, reliable, high endurance sensors in the near future is to move the current generation of sensors to a much greater degree of readiness. The ACT Oxygen Sensor Technology Evaluation demonstrated two important facts that are related to the need for sensors. There is a suite of commercially available sensors that can, in some circumstances, generate high quality data; however, the evaluation also showed that none of the sensors were able to generate high quality data in all circumstances for even one month time periods due to biofouling issues. Many groups are attempting to use oxygen sensors in large observing programs; however, there often seems to be limited communication between these groups and they often do not have access to sophisticated engineering resources. Instrument manufacturers also do not have sufficient resources to bring sensors, which are marketable, but of limited endurance or reliability, to a higher state of readiness. The goal of this ACT/ORION Oxygen Sensor Workshop was to bring together a group of experienced oceanographers who are now deploying oxygen sensors in extended arrays along with a core of experienced and interested academic and industrial engineers, and manufacturers. The intended direction for this workshop was for this group to exchange information accumulated through a variety of sensor deployments, examine failure mechanisms and explore a variety of potential solutions to these problems. One anticipated outcome was for there to be focused recommendations to funding agencies on development needs and potential solutions for 02 sensors. (pdf contains 19 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many of British rivers hold stocks of salmon (Salmo salar L.) and sea trout (Salmo trutta L.) and during most of the year some of the adult fish migrate upstream to the head waters where, with the advent of winter, they will eventually spawn. For a variety of reasons, including the generation of power for milling, improving navigation and measuring water flow, man has put obstacles in the way of migratory fish which have added to those already provided by nature in the shape of rapids and waterfalls. While both salmon and sea trout, particularly the former, are capable of spectacular leaps the movement of fish over man-made and natural obstacles can be helped, or even made possible, by the judicious use of fish passes. These are designed to give the fish an easier route over or round an obstacle by allowing it to overcome the water head difference in a series of stages ('pool and traverse' fish pass) or by reducing the water velocity in a sloping channel (Denil fish pass). Salmon and sea trout make their spawning runs at different flow conditions, salmon preferring much higher water flows than sea trout. Hence the design of fish passes requires an understanding of the swimming ability of fish (speed and endurance) and the effect of water temperature on this ability. Also the unique features of each site must be appreciated to enable the pass to be positioned so that its entrance is readily located. As well as salmon and sea trout, rivers often have stocks of coarse fish and eels. Coarse fish migrations are generally local in character and although some obstructions such as weirs may allow downstream passages only, they do not cause a significant problem. Eels, like salmon and sea trout, travel both up and down river during the course of their life histories. However, the climbing power of elvers is legendary and it is not normally necessary to offer them help, while adult silver eels migrate at times of high water flow when downstream movement is comparatively easy: for these reasons neither coarse fish nor eels are considered further. The provision of fish passes is, in many instances, mandatory under the Salmon and Freshwater Fisheries Act 1975. This report is intended for those involved in the planning, siting, construction and operation of fish passes and is written to clarify the hydraulic problems for the biologist and the biological problems for the engineer. It is also intended to explain the criteria by which the design of an individual pass is assessed for Ministerial Approval.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Behavior of young (8−18 mm SL) giant trevally (Caranx ignobilis), a large coral-reef−associated predator, was observed in the laboratory and the ocean. Size was a better predictor of swimming speed and endurance than was age. Critical speed increased with size from 12 to 40 cm/s at 2.7 cm/s for each mm increase in size. Mean scaled critical speed was 19 body lengths/s and was not size related. Swimming speed in the ocean was 4 to 20 cm/s (about half of critical speed) and varied among areas, but within each area, it increased at 2 cm/s for each mm increase in size. Swimming endurance in the laboratory increased from 5 to 40 km at 5 km for each mm increase in size. Vertical distribution changed ontogenetically: larvae swam shallower, but more variably, and then deeper with growth. Two-thirds of individuals swam directionally with no ontogenetic increase in orientation precision. Larvae swam offshore off open coasts, but not in a bay. In situ observations of C. ignobilis feeding, interacting with pelagic animals, and reacting to reefs are reported. Manusc