14 resultados para Empirical distribution function
em Aquatic Commons
Resumo:
The effects of El Niño–Southern Oscillation events on catches of Bigeye Tuna (Thunnus obesus) in the eastern Indian Ocean (EIO) off Java were evaluated through the use of remotely sensed environmental data (sea-surface-height anomaly [SSHA], sea-surface temperature [SST], and chlorophyll a concentration), and Bigeye Tuna catch data. Analyses were conducted for the period of 1997–2000, which included the 1997–98 El Niño and 1999–2000 La Niña events. The empirical orthogonal function (EOF) was applied to examine oceanographic parameters quantitatively. The relationship of those parameters to variations in catch distribution of Bigeye Tuna was explored with a generalized additive model (GAM). The mean hook rate was 0.67 during El Niño and 0.44 during La Niña, and catches were high where SSHA ranged from –21 to 5 cm, SST ranged from 24°C to 27.5°C, and chlorophyll-a concentrations ranged from 0.04 to 0.16 mg m–3. The EOF analysis confirmed that the 1997–98 El Niño affected oceanographic conditions in the EIO off Java. The GAM results indicated that SST was better than the other environmental factors (SSHA and chlorophyll-a concentration) as an oceanographic predictor of Bigeye Tuna catches in the region. According to the GAM predictions, the highest probabilities (70–80%) for Bigeye Tuna catch in 1997–2000 occurred during oceanographic conditions during the 1997–98 El Niño event.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): As part of a study of climatic influences on landslide initiation, a statistical analysis of long-term (>40 years) records of daily rainfall from 24 Pacific coastal stations, from San Diego to Cape Flattery, disclosed an unexpected result - the square root of the daily rainfall closely approximates a normal distribution function. ... This paper illustrates the use of the square-root-normal distribution to analyze variations in precipitation along the mainland United States Pacific Coast with examples of orographic enhancement, rain shadows, and increase in precipitation frequency with geographic latitude.
Resumo:
I simulated somatic growth and accompanying otolith growth using an individual-based bioenergetics model in order to examine the performance of several back-calculation methods. Four shapes of otolith radius-total length relations (OR-TL) were simulated. Ten different back-calculation equations, two different regression models of radius length, and two schemes of annulus selection were examined for a total of 20 different methods to estimate size at age from simulated data sets of length and annulus measurements. The accuracy of each of the twenty methods was evaluated by comparing the back-calculated length-at-age and the true length-at-age. The best back-calculation technique was directly related to how well the OR-TL model fitted. When the OR-TL was sigmoid shaped and all annuli were used, employing a least squares linear regression coupled with a log-transformed Lee back-calculation equation (y-intercept corrected) resulted in the least error; when only the last annulus was used, employing a direct proportionality back-calculation equation resulted in the least error. When the OR-TL was linear, employing a functional regression coupled with the Lee back-calculation equation resulted in the least error when all annuli were used, and also when only the last annulus was used. If the OR-TL was exponentially shaped, direct substitution into the fitted quadratic equation resulted in the least error when all annuli were used, and when only the last annulus was used. Finally, an asymptotically shaped OR-TL was best modeled by the individually corrected Weibull cumulative distribution function when all annuli were used, and when only the last annulus was used.
Resumo:
Empirical orthogonal function (EOF) analysis and regression analysis are used to investigate zonally averaged seasonal temperature anomaly patterns and trends in the lower stratosphere and upper troposphere. The first four EOFs explain 64 percent of the temperature variance and can be related, respectively, to the solar flux (SF) and El Niño/Southern Oscillation (ENSO), to the quasi-biennial oscillation (QBO), to atmospheric carbon dioxide (CO2) and turbidity (TB), and to ENSO. The signal of the fourth EOF is modulated in January to March by the solar flux, with the sense of the modulation determined by the phase of the quasi-biennial oscillation.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The influence of ENSO on atmospheric circulation and precipitation over the western United States is presented from two perspectives. First, ENSO-associated circulation patterns over the North Pacific/North America sector were identified using an REOF (rotated empirical orthogonal function) analysis of the 700-mb height field and compositing these for extreme phases of the Southern Oscillation Index. ... Second, we examine the variability of precipitation during the warm and cool phases of ENSO for different locations in the western United States.
Resumo:
In this thesis, wind wave prediction and analysis in the Southern Caspian Sea are surveyed. Because of very much importance and application of this matter in reducing vital and financial damages or marine activities, such as monitoring marine pollution, designing marine structure, shipping, fishing, offshore industry, tourism and etc, gave attention by some marine activities. In this study are used the Caspian Sea topography data that are extracted from the Caspian Sea Hydrography map of Iran Armed Forces Geographical Organization and the I 0 meter wind field data that are extracted from the transmitted GTS synoptic data of regional centers to Forecasting Center of Iran Meteorological Organization for wave prediction and is used the 20012 wave are recorded by the oil company's buoy that was located at distance 28 Kilometers from Neka shore for wave analysis. The results of this research are as follows: - Because of disagreement between the prediction results of SMB method in the Caspian sea and wave data of the Anzali and Neka buoys. The SMB method isn't able to Predict wave characteristics in the Southern Caspian Sea. - Because of good relativity agreement between the WAM model output in the Caspian Sea and wave data of the Anzali buoy. The WAM model is able to predict wave characteristics in the southern Caspian Sea with high relativity accuracy. The extreme wave height distribution function for fitting to the Southern Caspian Sea wave data is obtained by determining free parameters of Poisson-Gumbel function through moment method. These parameters are as below: A=2.41, B=0.33. The maximum relative error between the estimated 4-year return value of the Southern Caspian Sea significant wave height by above function with the wave data of Neka buoy is about %35. The 100-year return value of the Southern Caspian Sea significant height wave is about 4.97 meter. The maximum relative error between the estimated 4-year return value of the Southern Caspian Sea significant wave height by statistical model of peak over threshold with the wave data of Neka buoy is about %2.28. The parametric relation for fitting to the Southern Caspian Sea frequency spectra is obtained by determining free parameters of the Strekalov, Massel and Krylov etal_ multipeak spectra through mathematical method. These parameters are as below: A = 2.9 B=26.26, C=0.0016 m=0.19 and n=3.69. The maximum relative error between calculated free parameters of the Southern Caspian Sea multipeak spectrum with the proposed free parameters of double-peaked spectrum by Massel and Strekalov on the experimental data from the Caspian Sea is about 36.1 % in spectrum energetic part and is about 74M% in spectrum high frequency part. The peak over threshold waverose of the Southern Caspian Sea shows that maximum occurrence probability of wave height is relevant to waves with 2-2.5 meters wave fhe error sources in the statistical analysis are mainly due to: l) the missing wave data in 2 years duration through battery discharge of Neka buoy. 2) the deportation %15 of significant height annual mean in single year than long period average value that is caused by lack of adequate measurement on oceanic waves, and the error sources in the spectral analysis are mainly due to above- mentioned items and low accurate of the proposed free parameters of double-peaked spectrum on the experimental data from the Caspian Sea.
Resumo:
From September 1975 to September 1977 we conducted field research on bowhead, Balaena mysticetus, and white, Delphinapterus leucas, whales in the U.S. Bering, Chukchi, and Beaufort Seas. The objectives were to determine the general distribution and migration of these whales in spring and autumn and to estimate abundance. We also surveyed the literature beginning in June 1975 through March 1978 to augment our empirical results. (PDF contains 48 pages)
Resumo:
This article is an attempt to devise a method of using certain species of Corixidae as a basis for the assessment of general water quality in lakes. An empirical graphical representation of the distribution of populations or communities of Corixidae in relation to conductivity, based mainly on English and Welsh lakes, is used as a predictive monitoring model to establish the "expected" normal community at a given conductivity, representing the total ionic concentration of the water body. A test sample from another lake of known conductivity is then compared with "expected" community. The "goodness of fit" is examined visually or by calculation of indices of similarity based on the relative proportions of the constituent species of each community. A computer programme has been devised for this purpose.
Resumo:
We modeled the probability of capturing Pacif ic mackerel (Scomber japonicus) larvae as a function of environmental variables for the Southern California Bight (SCB) most years from 1951 through 2008 and Mexican waters offshore of Baja California from 1951 through 1984. The model exhibited acceptable fit, as indicated by the area under a receiver-operating-characteristic curve of 0.80 but was inconsistent with the zero catches that occurred frequently in the 2000s. Two types of spawners overlapped spatially within the survey area: those that exhibited peak spawning during April in the SCB at about 15.5°C and a smaller group that exhibited peak spawning in August near Punta Eugenia, Mexico, at 20°C or greater. The SCB generally had greater zooplankton than Mexican waters but less appropriate (lower) geostrophic f lows. Mexican waters generally exhibited greater predicted habitat quality than the SCB in cold years. Predicted quality of the habitat in the SCB was greater from the 1980s to 2008 than in the earlier years of the survey primarily because temperatures and geostrophic flows were more appropriate for larvae. However, stock size the previous year had a larger effect on predictions than any environmental variable, indicating that larval Pacific mackerel did not fully occupy the suitable habitat during most years.
Resumo:
Data from ichthyoplankton surveys conducted in 1972 and from 1977 to 1999 (no data were collected in 1980) by the Alaska Fisheries Science Center (NOAA, NMFS) in the western Gulf of Alaska were used to examine the timing of spawning, geographic distribution and abundance, and the vertical distribution of eggs and larvae of flathead sole (Hippoglossoides elassodon). In the western Gulf of Alaska, flathead sole spawning began in early April and peaked from early to mid-May on the continental shelf. It progressed in a southwesterly direction along the Alaska Peninsula where three main areas of flathead sole spawning were indentified: near the Kenai Peninsula, in Shelikof Strait, and between the Shumagin Islands and Unimak Island. Flathead sole eggs are pelagic, and their depth distribution may be a function of their developmental stage. Data from MOCNESS tows indicated that eggs sink near time of hatching and the larvae rise to the surface to feed. The geographic distribution of larvae followed a pattern similar to the distribution of eggs, only it shifted about one month later. Larval abundance peaked from early to mid-June in the southern portion of Shelikof Strait. Biological and environmental factors may help to retain flathead sole larvae on the continental shelf near their juvenile nursery areas.
Resumo:
Vibrio vulnificus is a gram-negative pathogenic bacterium endemic to coastal waters worldwide, and a leading cause of seafood related mortality. Because of human health concerns, understanding the ecology of the species and potentially predicting its distribution is of great importance. We evaluated and applied a previously published qPCR assay to water samples (n = 235) collected from the main-stem of the Chesapeake Bay (2007 – 2008) by Maryland and Virginia State water quality monitoring programs. Results confirmed strong relationships between the likelihood of Vibrio vulnificus presence and both temperature and salinity that were used to develop a logistic regression model. The habitat model demonstrated a high degree of concordance (93%), and robustness as subsequent bootstrapping (n=1000) did not change model output (P > 0.05). We forced this empirical habitat model with temperature and salinity predictions generated by a regional hydrodynamic modeling system to demonstrate its utility in future pathogen forecasting efforts in the Chesapeake Bay.
Resumo:
The dynamics of the survival of recruiting fish are analyzed as evolving random processes of aggregation and mortality. The analyses draw on recent advances in the physics of complex networks and, in particular, the scale-free degree distribution arising from growing random networks with preferential attachment of links to nodes. In this study simulations were conducted in which recruiting fish 1) were subjected to mortality by using alternative mortality encounter models and 2) aggregated according to random encounters (two schools randomly encountering one another join into a single school) or preferential attachment (the probability of a successful aggregation of two schools is proportional to the school sizes). The simulations started from either a “disaggregated” (all schools comprised a single fish) or an aggregated initial condition. Results showed the transition of the school-size distribution with preferential attachment evolving toward a scale-free school size distribution, whereas random attachment evolved toward an exponential distribution. Preferential attachment strategies performed better than random attachment strategies in terms of recruitment survival at time when mortality encounters were weighted toward schools rather than to individual fish. Mathematical models were developed whose solutions (either analytic or numerical) mimicked the simulation results. The resulting models included both Beverton-Holt and Ricker-like recruitment, which predict recruitment as a function of initial mean school size as well as initial stock size. Results suggest that school-size distributions during recruitment may provide information on recruitment processes. The models also provide a template for expanding both theoretical and empirical recruitment research.
Resumo:
An analysis of the factor-product relationship in the semi-intensive shrimp farming system of Kerala, farm basis and hectare basis, we are attempted and the results reported in this paper. The Cobb-Douglas model, in which the physical relationship between input and output is estimated, and the marginal analysis then employed to evaluate the producer behaviour, was used for the analysis. The study was based on empirical data collected during November 1994 to May 1996, covering three seasons, from 21 farms spread over Alappuzha, Ernakulam and Kasaragod districts of the state. The sample covered a total area of 61.06 ha. Of the 11 explanatory variables considered in the model, the size of the farm, casual labour and chemical fertilizers were found statistically significant. It was also observed that the factors such as age of pond, experience of the farmer, feed, miscellaneous costs, number of seed stocked and skilled labour contributed positively to the output. The estimated industry production function exhibited unitary economies of scale. The estimated mean output was 3937 kg/ha. The test of multi-co-linearity showed that there is no problem of dominant variable. On the basis of the marginal product and the given input-output prices, the optimum amounts of seed, feed and casual labour were estimated. They were about 97139 seed, 959 kg of feed and 585 man-days of casual labour per farm. This indicated the need for reducing the stocking density and amount of feed from the present levels, in order to maximise profit. Based on the finding of the study, suggestions for improving the industry production function are proposed.
Resumo:
The study was designed to determine the costs, returns and relative profitability of pond fish and nursery fish production. In order to attain this objective, a total of 70 producers: 35 producing pond fish and 35 producing nursery fish were selected on the basis of purposive random sampling technique from 6 villages under two Upazilas (Sujanagar and Santhia) of Pabna district. It was estimated that per hectare per year gross cost of pond fish production was Tk 65,918 while gross return and net return were Tk 91,707 and Tk 25,789 respectively. Per hectare per year gross cost of nursery fish production was Tk 87,489 while gross return and net return were Tk 1,39,272 and Tk 51,783 respectively. The findings revealed that nursery fish production was more profitable than pond fish production. Cobb-Douglas production function was applied to realize the specific effect of the factors on pond fish and nursery fish production. It was observed that most of the included variables had significant impact on pond fish and nursery fish production. Out of five variables included in the function, all the variables had positive impact on return from pond fish production but stock value of pond, material cost and pond area had positive impact on return from nursery fish production.